83 research outputs found

    The sex-specific factor SOA controls dosage compensation in <i>Anopheles</i> mosquitos

    Get PDF
    The Anopheles mosquito is one of thousands of species in which sex differences play a central role in their biology, as only females need a blood meal in order to produce eggs. Sex differentiation is regulated by sex chromosomes, but their presence creates a dosage imbalance between males (XY) and females (XX). Dosage compensation (DC) can re-equilibrate the expression of sex-chromosomal genes, but because DC mechanisms have only been fully characterized in a few model organisms, key questions about its evolutionary diversity and functional necessity remain unresolved 1. Here we report the discovery of a previously uncharacterized gene (SOA, for sex chromosome activation) as a master regulator of DC in the malaria mosquito Anopheles gambiae. Sex-specific alternative splicing prevents functional SOA protein expression in females. The male isoform encodes a DNA-binding protein that binds the promoters of active X chromosomal genes. Expressing male SOA is sufficient to induce DC in female cells. Male mosquitoes lacking SOA or female mosquitos ectopically expressing the male isoform exhibit X chromosome misregulation, which is compatible with viability but causes developmental delay. Thus, our molecular analysis of the first DC master regulator in a non-model organism elucidates the evolutionary steps leading to the establishment of a chromosome-specific fine-tuning mechanism

    Population Pharmacokinetic-Pharmacodynamic Modeling of Haloperidol in Patients With Schizophrenia Using Positive and Negative Syndrome Rating Scale

    Get PDF
    The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model that quantifies the efficacy of haloperidol, accounting for the placebo effect, the variability in exposure-response, and the dropouts. Subsequently, the developed model was utilized to characterize an effective dosing strategy for using haloperidol as a comparator drug in future antipsychotic drug trials. The time course of plasma haloperidol concentrations from 122 subjects and the Positive and Negative Syndrome Scale (PANSS) scores from 473 subjects were used in this analysis. A nonlinear mixed-effects modeling approach was utilized to describe the time course of PK and PANSS scores. Bootstrapping and simulation-based methods were used for the model evaluation. A 2-compartment model adequately described the haloperidol PK profiles. The Weibull and E-max models were able to describe the time course of the placebo and the drug effects, respectively. An exponential model was used to account for dropouts. Joint modeling of the PKPD model with dropout model indicated that the probability of patients dropping out is associated with the observed high PANSS score. The model evaluation results confirmed that the precision and accuracy of parameter estimates are acceptable. Based on the PKPD analysis, the recommended oral dose of haloperidol to achieve a 30% reduction in PANSS score from baseline is 5.6 mg/d, and the corresponding steady-state effective plasma haloperidol exposure is 2.7 ng/mL. In conclusion, the developed model describes the time course of PANSS scores adequately, and a recommendation of haloperidol dose was derived for future antipsychotic drug trials

    Combined Use of High-Sensitive Cardiac Troponin, Copeptin, and the Modified HEART Score for Rapid Evaluation of Chest Pain Patients.

    Get PDF
    Clinical short-term risk stratification is a recommended approach in patients with chest pain and possible acute myocardial infarction (AMI) to further improve high safety of biomarker-based rule-out algorithms. The study aim was to assess clinical performance of baseline concentrations of high-sensitivity cardiac troponin T (hs-TnT) and copeptin and the modified HEART score (mHS) in early presenters to the emergency department with chest pain. This cohort study included patients with chest pain with onset maximum of 6 h before admission and no persistent ST-segment elevation on electrocardiogram. hs-TnT, copeptin, and the mHS were assessed from admission data. The diagnostic and prognostic value for three baseline rule-out algorithms: (1) single hs-TnT &lt; 14 ng/l, (2) hs-TnT &lt; 14 ng/l/mHS ≤ 3, and (3) hs-TnT &lt; 14 ng/l/mHS ≤ 3/copeptin &lt; 17.4 pmol/l, was assessed with sensitivity and negative predictive value. Primary diagnostic endpoint was the diagnosis of AMI. Prognostic endpoint was death and/or AMI within 30 days. Among 154 enrolled patients, 44 (29%) were classified as low-risk according to the mHS; AMI was diagnosed in 105 patients (68%). For ruling out AMI, the highest sensitivity and NPV from all studied algorithms were observed for hs-TnT/mHS/copeptin (100%, 95% CI 96.6-100, and 100%, 95% CI 75.3-100). At 30 days, the highest event-free survival was achieved in patients stratified with hs-TnT/mHS/copeptin algorithm (100%) with 100% (95% CI 75.3-100) NPV and 100% (95% CI 96.6-100) sensitivity. The combination of baseline hs-TnT, copeptin, and the mHS has an excellent sensitivity and NPV for short-term risk stratification. Such approach might improve the triage system in emergency departments and be a bridge for inclusion to serial blood sampling algorithms

    Translational Modeling in Schizophrenia:Predicting Human Dopamine D2 Receptor Occupancy

    Get PDF
    OBJECTIVES: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs.METHODS: A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses.RESULTS: Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol.CONCLUSIONS: The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.</p

    Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D-2 receptor occupancy of olanzapine in rats

    Get PDF
    A mechanism-based PK-PD model was developed to predict the time course of dopamine D-2 receptor occupancy (D2RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentration) and D2RO profile obtained experimentally at various doses (0.01-40 mg/kg) administered by different routes. A two-compartment pharmacokinetic model was used to describe the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was developed to characterize the D-2 receptor binding in the striatum and was fitted sequentially to the data. The parameters were estimated using nonlinear mixed-effects modeling . Plasma, brain concentration profiles and time course of D2RO were well described by the model; validity of the proposed model is supported by good agreement between estimated association and dissociation rate constants and in vitro values from literature. This model includes both receptor binding kinetics and pharmacokinetics as the basis for the prediction of the D2RO in rats. Moreover, this modeling framework can be applied to scale the in vitro and preclinical information to clinical receptor occupancy

    Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats

    Get PDF
    A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D-2 and serotonin 5-HT2A receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats. A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D-2 and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D-2 receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT2A receptors in the frontal cortex. A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D-2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern. Binding to both D-2 and 5-HT2A receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D-2 and 5-HT2A receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p&nbsp;&lt;.001. Over 24&nbsp;months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10&nbsp;ml/min/1.73&nbsp;m2 decrease), that was most notable in patients with eGFR &lt;30&nbsp;ml/min/1.73&nbsp;m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90&nbsp;ml/min/1.73&nbsp;m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF
    corecore