90 research outputs found

    Ecological Facilitation May Drive Major Evolutionary Transitions

    Get PDF
    There is a growing consensus among ecologists that ecological facilitation comprises a historically overlooked but crucial suite of biotic interactions. Awareness of such positive interactions has recently led to substantial modifications in ecological theory. In this article we suggest how facilitation may be included in evolutionary theory. Natural selection based on competition provides a conceptually complete paradigm for speciation, but not for major evolutionary transitions-the emergence of new and more complex biological structures such as cells, organisms, and eusocial populations. We find that the successful theories developed to solve these specific problematic transitions show a consistent pattern: they focus on positive interactions. We argue that facilitation between individuals at different levels of biological organization can act as a cohesive force that generates a new level of organization with higher complexity and thus allows for major evolutionary transitions at all levels of biological hierarchy

    Changes in species composition in alpine snowbeds with climate change inferred from small-scale spatial patterns

    Get PDF
    Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. <br><br> Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (<i>Alchemilla pentaphyllea</i>) was spatially aggregated with subordinate snowbed species, while two other dominants (<i>Gnaphalium supinum</i> and <i>Salix herbacea</i>) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. <br><br> These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by <i>Gnaphalium</i> or <i>Salix</i> seem to be particularly prone to invasions by non-snowbed species

    Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient

    Get PDF
    Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. © 2013 Moustakas et al

    Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants

    Get PDF
    Background: The distribution and abundance of plants is controlled by the availability of seeds and of sites suitable for establishment. The relative importance of these two constraints is still contentious and possibly varies among species and ecosystems. In alpine landscapes, the role of seed limitation has traditionally been neglected, and the role of abiotic gradients emphasized. Methodology/Principal Findings: We evaluated the importance of seed limitation for the incidence of four alpine snowbed species (Achillea atrata L., Achillea clusiana Tausch, Arabis caerulea L., Gnaphalium hoppeanum W. D. J. Koch) in local plant communities by comparing seedling emergence, seedling, juvenile and adult survival, juvenile and adult growth, flowering frequency as well as population growth rates lambda of experimental plants transplanted into snowbed patches which were either occupied or unoccupied by the focal species. In addition, we accounted for possible effects of competition or facilitation on these rates by including a measure of neighbourhood biomass into the analysis. We found that only A. caerulea had significantly lower seedling and adult survival as well as a lower population growth rate in unoccupied sites whereas the vital rates of the other three species did not differ among occupied and unoccupied sites. By contrast, all species were sensitive to competitive effects of the surrounding vegetation in terms of at least one of the studied rates. Conclusions/Significance: We conclude that seed and site limitation jointly determine the species composition of these snowbed plant communities and that constraining site factors include both abiotic conditions and biotic interactions. The traditional focus on abiotic gradients for explaining alpine plant distribution hence appears lopsided. The influence of seed limitation on the current distribution of these plants casts doubt on their ability to readily track shifting habitats under climate change unless seed production is considerably enhanced under a warmer climate

    High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Altres ajuts: FBBVA research grant (BIOCON_06_106-07)It has been suggested that traditional ecological knowledge (TEK) may play a key role in forest conservation. However, empirical studies assessing to what extent TEK is associated with forest conservation compared with other variables are rare. Furthermore, to our knowledge, the spatial overlap of TEK and forest conservation has not been evaluated at fine scales. In this paper, we address both issues through a case study with Tsimane' Amerindians in the Bolivian Amazon. We sampled 624 households across 59 villages to estimate TEK and used remote sensing data to assess forest conservation. We ran statistical and spatial analyses to evaluate whether TEK was associated and spatially overlapped with forest conservation at the village level. We find that Tsimane' TEK is significantly and positively associated with forest conservation although acculturation variables bear stronger and negative associations with forest conservation. We also find a very significant spatial overlap between levels of Tsimane' TEK and forest conservation. We discuss the potential reasons underpinning our results, which provide insights that may be useful for informing policies in the realms of development, conservation, and climate. We posit that the protection of indigenous cultural systems is vital and urgent to create more effective policies in such realms

    Association between diabetes mellitus and multi-drug-resistant tuberculosis:a protocol for a systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Multi-drug-resistant tuberculosis (MDR-TB) has emerged as a challenge to global tuberculosis (TB) control and remains a major public health concern in many countries. Diabetes mellitus (DM) is an increasingly recognized comorbidity that can both accelerate TB disease and complicate its treatment. The aim of this study is to summarize available evidence on the association of DM and MDR-TB among TB patients and to provide a pooled estimate of risks. METHODS: All studies published in English before October 2016 will be searched using comprehensive search strings through PubMed, EMBASE, Web of Science, and WHO Global Health Library databases which have reported the association of DM and MDR-TB in adults with TB (age > =15). Two authors will independently collect detailed information using structured data abstraction form. The quality of studies will be checked using Newcastle-Ottawa Scale for cohort and case-control studies and the Agency for Healthcare Research and Quality tool for cross-sectional studies. Heterogeneity between included studies will be assessed using the I(2) statistic. We will check potential publication bias by visual inspection of the funnel plot and Egger's regression test statistic. We will use the random effects model to compute a pooled estimate. DISCUSSION: Increases in the burden of non-communicable diseases and aging populations are changing the importance of different risk factors for TB, and the profile of comorbidities and clinical challenges for people with TB. Although classic risk factors and comorbidities such as overcrowding, under-nutrition, silicosis, and HIV infection are crucial to address, chronic conditions like diabetes are important factors that impair host defenses against TB. Thus, undertaking integrated multifaceted approach is remarkably necessary for reducing the burden of DM and successful TB treatment outcome. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016045692
    • …
    corecore