126 research outputs found

    Production and characterization of recombinant protein preparations of Endonuclease G-homologs from yeast, C. elegans and humans

    Get PDF
    Nuc1p, CPS-6, EndoG and EXOG are evolutionary conserved mitochondrial nucleases from yeast, Caenorhabditis elegans and humans, respectively. These enzymes play an important role in programmed cell death as well as mitochondrial DNA-repair and recombination. Whereas a significant interest has been given to the cell biology of these proteins, in particular their recruitment during caspase-independent apoptosis, determination of their biochemical properties has lagged behind. In part, biochemical as well as structural analysis of mitochondrial nucleases has been hampered by the fact that upon cloning and overexpression in Escherichia coli these enzymes can exert considerable toxicity and tend to aggregate and form inclusion bodies. We have, therefore, established a uniform E. coli expression system allowing us to obtain these four evolutionary related nucleases in active form from the soluble as well as insoluble fractions of E. coli cell lysates. Using preparations of recombinant Nuc1p, CPS-6, EndoG and EXOG we have compared biochemical properties and the substrate specificities of these related nucleases on selected substrates in parallel. Whereas Nuc1p and EXOG in addition to their endonuclease activity exert 5'-3'- exonuclease activity, CPS-6 and EndoG predominantly are endonucleases. These findings allow speculating that the mechanisms of action of these related nucleases in cell death as well as DNA-repair and recombination differ according to their enzyme activities and substrate specificities. © 2010 Elsevier Inc. All rights reserved

    Fully Immunocompetent CD8+ T Lymphocytes Are Present in Autologous Haematopoietic Stem Cell Transplantation Recipients Despite an Ineffectual T-Helper Response

    Get PDF
    BACKGROUND: Reduced CD4 T lymphocytes counts can be observed in HIV infection and in patients undergoing autologous haematopoietic stem cell transplantation (ASCT). Nevertheless, whereas opportunistic infections (OI) are frequent in HIV-infected individuals with low cell counts, OI are uncommon in ASCT patients. METHODOLOGY/PRINCIPAL FINDINGS: To verify whether this observation could be secondary to intrinsic HIV-correlated T cell defects, we performed in-depth immunologic analyses in 10 patients with comparable CD4 counts in whom lymphopenia was secondary either to HIV-infection or ASCT-associated immunosuppressive therapy and compared them to age-matched healthy subjects. Results showed the presence of profound alterations in CD4+ T lymphocytes in both groups of patients with respect to healthy controls. Thus, a low percentage of CCR7+ CD4+ T cells and a compensative expansion of CD45RA-CCR7- CD4+ T cells, a reduced IL-2/IFN-gamma cytokine production and impaired recall antigens-specific proliferative responses were detected both in ASCT and HIV patients. In stark contrast, profound differences were detected in CD8+ T-cells between the two groups of patients. Thus, mature CD8+ T cell prevailed in ASCT patients in whom significantly lower CD45RA-CCR7- cells, higher CD45RA+CCR7- CD8+ cells, and an expansion of CCR7+CD8+ cells was detected; this resulted in higher IFN-gamma +/TNFalpha production and granzyme CD8+ expression. The presence of strong CD8 T cells mediated immune responses justifies the more favorable clinical outcome of ASCT compared to HIV patients. CONCLUSION/SIGNIFICANCE: These results indicate that CD8 T cells maturation and functions can be observed even in the face of a profound impairment of CD4+ T lymphocytes in ASCT but not in HIV patients. Primary HIV-associated CD8 defects or an imprinting by an intact CD4 T cell system in ASCT could justify these results

    The Dynamics of T-Cell Receptor Repertoire Diversity Following Thymus Transplantation for DiGeorge Anomaly

    Get PDF
    T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRβ V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of substantial clonal expansion-induced perturbation from the steady state

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    IL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions

    Get PDF
    Background: Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8 + T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4 + T helper cells. Methodology/Principal Findings: Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8 + and CD4 + T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8 + T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8 + T cell self-reactivity. Conclusions/Significance: IL-2 mediates the cooperation of memory-like CD4 + and CD8 + T cells in the breakdown of crosstolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease

    Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age

    Get PDF
    Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis

    Cell-to-Cell Interactions and Signals Involved in the Reconstitution of Peripheral CD8+ TCM and TEM Cell Pools

    Get PDF
    We here describe novel aspects of CD8+ and CD4+ T cell subset interactions that may be clinically relevant and provide new tools for regulating the reconstitution of the peripheral CD8+ T cell pools in immune-deficient states. We show that the reconstitution capacity of transferred isolated naïve CD8+ T cells and their differentiation of effector functions is limited, but both dramatically increase upon the co-transfer of CD4+ T cells. This helper effect is complex and determined by multiple factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4+ T cells, dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By comparing the recovery of (CD44+CD62Lhigh) TCM and (CD44+CD62Llow) TEM CD8+ T cells, we found that the accumulation of TCM and TEM subsets is differentially regulated. TCM-cell accumulation depended mainly on type I interferons, interleukin (IL)-6, and IL-15, but was independent of CD4+ T-cell help. In contrast, TEM-cell expansion was mainly determined by CD4+ T-cell help and dependent on the expression of IL-2Rβ by CD8 cells, on IL-2 produced by CD4+ T-cells, on IL-15 and to a minor extent on IL-6

    Idebenone and Resveratrol Extend Lifespan and Improve Motor Function of HtrA2 Knockout Mice

    Get PDF
    Heterozygous loss-of-function mutation of the human gene for the mitochondrial protease HtrA2 has been associated with increased risk to develop mitochondrial dysfunction, a process known to contribute to neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). Knockout of HtrA2 in mice also leads to mitochondrial dysfunction and to phenotypes that resemble those found in neurodegenerative disorders and, ultimately, lead to death of animals around postnatal day 30. Here, we show that Idebenone, a synthetic antioxidant of the coenzyme Q family, and Resveratrol, a bioactive compound extracted from grapes, are both able to ameliorate this phenotype. Feeding HtrA2 knockout mice with either compound extends lifespan and delays worsening of the motor phenotype. Experiments conducted in cell culture and on brain tissue of mice revealed that each compound has a different mechanism of action. While Idebenone acts by downregulating the integrated stress response, Resveratrol acts by attenuating apoptosis at the level of Bax. These activities can account for the delay in neuronal degeneration in the striata of these mice and illustrate the potential of these compounds as effective therapeutic approaches against neurodegenerative disorders such as HD or PD
    corecore