416 research outputs found

    A systematic review of assessment approaches to predict opioid misuse in people with cancer.

    Full text link
    CONTEXT: Cancer prevalence is increasing, with many patients requiring opioid analgesia. Clinicians need to ensure patients receive adequate pain relief. However, opioid misuse is widespread, and cancer patients are at risk. OBJECTIVES: This study aims (1) to identify screening approaches that have been used to assess and monitor risk of opioid misuse in patients with cancer; (2) to compare the prevalence of risk estimated by each of these screening approaches; and (3) to compare risk factors among demographic and clinical variables associated with a positive screen on each of the approaches. METHODS: Medline, Cochrane Controlled Trial Register, PubMed, PsycINFO, and Embase databases were searched for articles reporting opioid misuse screening in cancer patients, along with handsearching the reference list of included articles. Bias was assessed using tools from the Joanna Briggs Suite. RESULTS: Eighteen studies met the eligibility criteria, evaluating seven approaches: Urine Drug Test (UDT) (n = 8); the Screener and Opioid Assessment for Patients with Pain (SOAPP) and two variants, Revised and Short Form (n = 6); the Cut-down, Annoyed, Guilty, Eye-opener (CAGE) tool and one variant, Adapted to Include Drugs (n = 6); the Opioid Risk Tool (ORT) (n = 4); Prescription Monitoring Program (PMP) (n = 3); the Screen for Opioid-Associated Aberrant Behavior Risk (SOABR) (n = 1); and structured/specialist interviews (n = 1). Eight studies compared two or more approaches. The rates of risk of opioid misuse in the studied populations ranged from 6 to 65%, acknowledging that estimates are likely to have varied partly because of how specific to opioids the screening approaches were and whether a single or multi-step approach was used. UDT prompted by an intervention or observation of aberrant opioid behaviors (AOB) were conclusive of actual opioid misuse found to be 6.5-24%. Younger age, found in 8/10 studies; personal or family history of anxiety or other mental ill health, found in 6/8 studies; and history of illicit drug use, found in 4/6 studies, showed an increased risk of misuse. CONCLUSIONS: Younger age, personal or familial mental health history, and history of illicit drug use consistently showed an increased risk of opioid misuse. Clinical suspicion of opioid misuse may be raised by data from PMP or any of the standardized list of AOBs. Clinicians may use SOAPP-R, CAGE-AID, or ORT to screen for increased risk and may use UDT to confirm suspicion of opioid misuse or monitor adherence. More research into this important area is required. SIGNIFICANCE OF RESULTS: This systematic review summarized the literature on the use of opioid misuse risk approaches in people with cancer. The rates of reported risk range from 6 to 65%; however, true rate may be closer to 6.5-24%. Younger age, personal or familial mental health history, and history of illicit drug use consistently showed an increased risk of opioid misuse. Clinicians may choose from several approaches. Limited data are available on feasibility and patient experience. PROSPERO registration number. CRD42020163385

    Assessing housing quality and its impact on health, safety and sustainability

    Get PDF
    Background The adverse health and environmental effects of poor housing quality are well established. A central requirement for evidence-based policies and programmes to improve housing standards is a valid, reliable and practical way of measuring housing quality that is supported by policy agencies, the housing sector, researchers and the public. Methods This paper provides guidance on the development of housing quality-assessment tools that link practical measures of housing conditions to their effects on health, safety and sustainability, with particular reference to tools developed in New Zealand and England. Results The authors describe how information on housing quality can support individuals, agencies and the private sector to make worthwhile improvements to the health, safety and sustainability of housing. The information gathered and the resultant tools developed should be guided by the multiple purposes and end users of this information. Other important issues outlined include deciding on the scope, detailed content, practical administration issues and how the information will be analysed and summarised for its intended end users. There are likely to be considerable benefits from increased international collaboration and standardisation of approaches to measuring housing hazards. At the same time, these assessment approaches need to consider local factors such as climate, geography, culture, predominating building practices, important housing-related health issues and existing building codes. Conclusions An effective housing quality-assessment tool has a central role in supporting improvements to housing. The issues discussed in this paper are designed to motivate and assist the development of such tools

    A Method to Determine the In-Air Spatial Spread of Clinical Electron Beams

    Get PDF
    We propose and analyze in detail a method to measure the in-air spatial spread parameter of clinical electron beams. Measurements are performed at the center of the beam and below the adjustable collimators sited in asymmetrical configuration in order to avoid the distortions due to the presence of the applicator. The main advantage of our procedure lies in the fact that the dose profiles are fitted by means of a function which includes, additionally to the Gaussian step usually considered, a background which takes care of the dose produced by different mechanisms that the Gaussian model does not account for. As a result, the spatial spread is obtained directly from the fitting procedure and the accuracy permits a good determination of the angular spread. The way the analysis is done is alternative to that followed by the usual methods based on the evaluation of the penumbra width. Besides, the spatial spread found shows the quadratic-cubic dependence with the distance to the source predicted by the Fermi-Eyges theory. However, the corresponding values obtained for the scattering power are differing from those quoted by ICRU nr. 35 by a factor ~2 or larger, what requires of a more detailed investigation.Comment: 11 pages, 5 Postscript figures, to be published in Medical Physic

    Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    Get PDF
    Multileaf collimator (MLC) tracking is a promising and clinically emerging treatment modality for radiotherapy of mobile tumours. Still, new quality assurance (QA) methods are warranted to safely introduce MLC tracking in the clinic. The purpose of this study was to create and experimentally validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets.MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder system. A three-axis motion stage reproduced eight representative tumour trajectories; four lung and four prostate. Low and high modulation 6 MV single-arc volumetric modulated arc therapy treatment plans were delivered for each trajectory with and without MLC tracking, as well as without motion for reference. Temporally resolved doses were measured during all treatments using a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the dosimeter was reconstructed with 500 ms temporal resolution by a motion-including pencil beam convolution algorithm developed in-house. The accuracy of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of-0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose and is adequately fast to be feasible for online use. An online implementation could allow treatment intervention in case of erroneous dose delivery in both tracking and non-tracking treatments

    The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer.

    Get PDF
    BACKGROUND AND PURPOSE: Radiotherapy that selectively avoids irradiating highly-functional lung regions may reduce pulmonary toxicity. We report on the first clinical implementation and patient treatment of lung functional image-guided radiotherapy using an emerging technology, computed tomography (CT) ventilation imaging. MATERIAL AND METHODS: A protocol was developed to investigate the safety and feasibility of CT ventilation functional image-guided radiotherapy. CT ventilation imaging is based on (1) deformable image registration of four-dimensional (4D) CT images, and (2) quantitative image analysis for regional volume change, a surrogate for ventilation. CT ventilation functional image-guided radiotherapy plans were designed to minimize specific lung dose-function metrics, including functional V20 (fV20), while maintaining target coverage and meeting standard constraints to other critical organs. RESULTS: CT ventilation functional image-guided treatment planning reduced the lung fV20 by 5% compared to an anatomic image-guided plan for an enrolled patient with stage IIIB non-small cell lung cancer. Although the doses to several other critical organs increased, the necessary constraints were all met. CONCLUSIONS: An emerging technology, CT ventilation imaging has been translated into the clinic and used in functional image-guided radiotherapy for the first time. This milestone represents an important first step toward hypothetically reduced pulmonary toxicity in lung cancer radiotherapy

    Time-resolved dose reconstruction by motion encoding of volumetric modulated arc therapy fields delivered with and without dynamic multi-leaf collimator tracking.

    Get PDF
    BACKGROUND: Organ motion during treatment delivery in radiotherapy (RT) may lead to deterioration of the planned dose, but can be mitigated by dynamic multi-leaf collimator (DMLC) tracking. The purpose of this study was to implement and experimentally validate a method for time-resolved motion including dose reconstruction for volumetric modulated arc therapy (VMAT) treatments delivered with and without DMLC tracking. MATERIAL AND METHODS: Tracking experiments were carried out on a linear accelerator (Trilogy, Varian) with a prototype DMLC tracking system. A motion stage carrying a biplanar dosimeter phantom (Delta4PT, Scandidos) reproduced eight representative clinical tumor trajectories (four lung, four prostate). For each trajectory, two single-arc 6 MV VMAT treatments with low and high modulation were delivered to the moving phantom with and without DMLC tracking. An existing in-house developed program that adds target motion to treatment plans was extended with the ability to split an arc plan into any number of sub-arcs, allowing the calculated dose for different parts of the treatment to be examined individually. For each VMAT sub-arc, reconstructed and measured doses were compared using dose differences and 3%/3 mm γ-tests. RESULTS: For VMAT sub-arcs the reconstructed dose distributions had a mean root-mean-square (rms) dose difference of 2.1% and mean γ failure rate of 2.0% when compared with the measured doses. For final accumulated doses the mean rms dose difference was 1.6% and the γ failure rate was 0.7%. CONCLUSION: The time-resolved motion including dose reconstruction was experimentally validated for complex tracking and non-tracking treatments with patient-measured tumor motion trajectories. The reconstructed dose will be of high value for evaluation of treatment plan robustness facing organ motion and adaptive RT

    Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles.

    Get PDF
    PURPOSE: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with (68)Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. METHODS: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (VHU) or Jacobian determinant of deformation (VJac). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρVHU and ρVJac) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σm = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d20 for the (0 - 20)th functional percentile volumes. RESULTS: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρVHU) with σm = 3 mm. This leads to correlation values in the ranges 0.22 ≤ r ≤ 0.76 and 0.38 ≤ d20 ≤ 0.68, with r = 0.42 ± 0.16 and d20 = 0.52 ± 0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r and d20 (p < 0.05), with density scaled metrics also showing higher r than for unscaled versions (p < 0.02). r and d20 were also sensitive to image quality, with statistically significant improvements using standard (as opposed to gated) PET images and with application of median filtering. CONCLUSIONS: The use of modified CT ventilation metrics, in conjunction with PET-Galligas and careful application of image filtering has resulted in improved correlation compared to earlier studies using nuclear medicine ventilation. However, CT ventilation and PET-Galligas do not always provide the same functional information. The authors have demonstrated that the agreement can improve for CT ventilation metrics incorporating a tissue density scaling, and also with increasing PET image quality. CT ventilation imaging has clear potential for imaging regional air volume change in the lung, and further development is warranted

    The impact of audiovisual biofeedback on 4D functional and anatomic imaging: Results of a lung cancer pilot study.

    Get PDF
    BACKGROUND AND PURPOSE: The impact of audiovisual (AV) biofeedback on four dimensional (4D) positron emission tomography (PET) and 4D computed tomography (CT) image quality was investigated in a prospective clinical trial (NCT01172041). MATERIAL AND METHODS: 4D-PET and 4D-CT images of ten lung cancer patients were acquired with AV biofeedback (AV) and free breathing (FB). The 4D-PET images were analyzed for motion artifacts by comparing 4D to 3D PET for gross tumor volumes (GTVPET) and maximum standardized uptake values (SUVmax). The 4D-CT images were analyzed for artifacts by comparing normalized cross correlation-based scores (NCCS) and quantifying a visual assessment score (VAS). A Wilcoxon signed-ranks test was used for statistical testing. RESULTS: The impact of AV biofeedback varied widely. Overall, the 3D to 4D decrease of GTVPET was 1.2±1.3cm(3) with AV and 0.6±1.8cm(3) for FB. The 4D-PET increase of SUVmax was 1.3±0.9 with AV and 1.3±0.8 for FB. The 4D-CT NCCS were 0.65±0.27 with AV and 0.60±0.32 for FB (p=0.08). The 4D-CT VAS was 0.0±2.7. CONCLUSION: This study demonstrated a high patient dependence on the use of AV biofeedback to reduce motion artifacts in 4D imaging. None of the hypotheses tested were statistically significant. Future development of AV biofeedback will focus on optimizing the human-computer interface and including patient training sessions for improved comprehension and compliance

    Sex Ratio Bias and Extinction Risk in an Isolated Population of Tuatara (\u3ci\u3eSphenodon Punctatus\u3c/i\u3e)

    Get PDF
    Understanding the mechanisms underlying population declines is critical for preventing the extinction of endangered populations. Positive feedbacks can hasten the process of collapse and create an ‘extinction vortex,’ particularly in small, isolated populations. We provide a case study of a male-biased sex ratio creating the conditions for extinction in a natural population of tuatara (Sphenodon punctatus) on North Brother Island in the Cook Strait of New Zealand. We combine data from long term mark-recapture surveys, updated model estimates of hatchling sex ratio, and population viability modeling to measure the impacts of sex ratio skew. Results from the mark-recapture surveys show an increasing decline in the percentage of females in the adult tuatara population. Our monitoring reveals compounding impacts on female fitness through reductions in female body condition, fecundity, and survival as the male-bias in the population has increased. Additionally, we find that current nest temperatures are likely to result in more male than female hatchlings, owing to the pattern of temperature-dependent sex determination in tuatara where males hatch at warmer temperatures. Anthropogenic climate change worsens the situation for this isolated population, as projected temperature increases for New Zealand are expected to further skew the hatchling sex ratio towards males. Population viability models predict that without management intervention or an evolutionary response, the population will ultimately become entirely comprised of males and functionally extinct. Our study demonstrates that sex ratio bias can be an underappreciated threat to population viability, particularly in populations of long-lived organisms that appear numerically stable
    corecore