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Abstract	

Purpose:  

Multileaf collimator (MLC) tracking is a promising and clinically emerging 

treatment modality for radiotherapy of mobile tumours. Still, new quality 

assurance (QA) methods are warranted to safely introduce MLC tracking in the 

clinic. The purpose of this study was to create and experimentally validate a 

simple model for fast motion-including dose error reconstruction applicable to 

intrafractional QA of MLC tracking treatments of moving targets. 

Methods:  
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MLC tracking experiments were performed on a standard linear accelerator with 

prototype MLC tracking software guided by an electromagnetic transponder 

system. A three-axis motion stage reproduced eight representative tumour 

trajectories; four lung and four prostate. Low and high modulation 6 MV single-

arc volumetric modulated arc therapy (VMAT) treatment plans were delivered 

for each trajectory with and without MLC tracking, as well as without motion for 

reference. Temporally resolved doses were measured during all treatments using 

a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the 

dosimeter was reconstructed with 500 ms temporal resolution by a motion-

including pencil beam convolution algorithm developed in-house. The accuracy 

of the algorithm for reconstruction of dose and motion-induced dose errors 

throughout the tracking and non-tracking beam deliveries was quantified. 

Results:  

Doses were reconstructed with a mean dose difference relative to the 

measurements of -0.5% (5.5% standard deviation) for cumulative dose. More 

importantly, the root-mean-square deviation between reconstructed and 

measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The 

mean computation time for each calculation of dose and dose error was 295 ms. 

Conclusions:  

The motion-including dose reconstruction allows accurate temporal and spatial 

pinpointing of errors in absorbed dose and is adequately fast to be feasible for 

online use. An online implementation could allow treatment intervention in case 

of erroneous dose delivery in both tracking and non-tracking treatments. 
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Introduction	

Conformal dose is a ubiquitous aim in radiotherapy (RT) in the pursuit of 

high and curative doses to the tumour whilst sparing healthy tissue. Volumetric 

modulated arc therapy (VMAT) has become a favoured treatment modality since 

it enables highly conformal dose delivery in an efficient way (Yu 1995, Otto 

2008). Unfortunately, organ motion during treatment delivery can lead to 

deterioration of the dose distribution (Keall et al 2006, Korreman 2012). A 

promising method to account for the intrafraction motion is multileaf collimator 

(MLC) tracking, in which real-time target position monitoring is used to 

continuously adapt the planned MLC aperture to the position of the moving 

target (Keall et al 2001, McQuaid and Webb 2006, Liu et al 2009, Krauss et al 

2011, Crijns et al 2012). However, while MLC tracking is now emerging in the 

clinic (Keall et al 2014), the standard premises for plan-specific quality assurance 

(QA) of treatments are no longer valid for MLC tracking treatments, as not all 

motions of the linear accelerator are known prior to treatment. Thus, an entirely 

new QA regime is required to safely translate MLC tracking into a clinical setting. 

A failure mode and effects analysis approach to QA for MLC tracking has 

been performed (Sawant et al 2010). The highest risk failure mode identified in 

the MLC tracking process is that optimal leaf adaptation is not achieved. One way 

of testing a treatment plan’s robustness to motion, with or without tracking 

applied, could be to deliver the plan to a phantom reproducing a large number of 

known or expected tumour motion trajectories and analyse the dosimetric 

outcome in a probabilistic manner. Another approach could be to monitor 
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delivered dose in real time, either through direct-readout in vivo dose 

measurements (Jarvis et al 2014, Mans et al 2010b) or real-time calculations. We 

have previously shown that the MLC exposure errors (Poulsen et al 2012a), i.e. 

the shielded MLC areas that should ideally be exposed and vice versa, correlate 

well with the transient dose errors in both tracking and non-tracking treatments 

(Ravkilde et al 2013a). However, such correlations are plan-specific and a full 

dose reconstruction is needed in order to robustly quantify the magnitude of the 

transient dose errors and to determine whether the transient errors cancel out 

or build up during the VMAT delivery. Previous motion-including reconstructions 

of actually delivered dose (Lee et al 2008, Bharat et al 2012, Poulsen et al 2012b, 

Belec and Clark 2013) have stopped short of real-time implementations in part 

due to the computation time, which tends to increase with increased accuracy 

demands. It is possible, however, that considerably less detail is actually 

necessary to get an indication of the dose error, i.e. the deviation of actual dose 

from planned dose, which is the main quantity of interest for patient safety 

during irradiation. We hypothesize that such motion-induced dose errors can be 

robustly reconstructed in a computationally efficient manner.  

At many institutions, including our own, pre-treatment plan-specific QA is 

performed for challenging treatments using a homogeneous dosimeter of some 

kind. It is considered safe to deliver the treatment plan to a patient if the 

measured dose in the homogeneous phantom agrees with the planned dose, 

recalculated on the phantom, within some acceptable level of error. The intent 

of the immediate study was to provide a measure of plan deliverability similar to 
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this current standard that will be attainable in real time during irradiation and be 

able to also take into account the intrafractional motion. In this study we present 

a simple – but fast and scalable – motion-including dose (error) reconstruction 

algorithm intended for such intrafractional monitoring of dose errors. We 

analyse its ability to reconstruct time-resolved measurements of dose 

distributions and dose errors to moving targets during VMAT treatment 

deliveries with and without MLC tracking, and whether it is feasible for online 

use. An actual online application of the algorithm is considered beyond the scope 

of the present study. 

Methods	

In the following, we make use of previously published experimental dose 

data (Ravkilde et al 2013a, 2013b) for validation of a dose reconstruction 

algorithm, and we will therefore only briefly describe the essential parts of the 

experiments to make this study self-contained. We then describe in depth the 

algorithm developed to reconstruct the dose and dose error based on 

experiments, as well as the comparison of measured and reconstructed dose 

data. 

Experiments and data processing 

MLC tracking experiments were carried out at Aarhus University Hospital 

on a Trilogy linear accelerator equipped with a 120 leaf Millennium MLC (Varian 

Medical Systems, Palo Alto, CA) connected to a prototype MLC tracking system 

(Sawant et al 2008). The system was guided by the real-time 3D target position 
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signal of an electromagnetic transponder at 30 Hz (Ravkilde et al 2011) [RayPilot, 

Micropos Medical, Sweden]. Time-resolved dose distributions were measured at 

72 Hz with a biplanar diode arrays dosimeter (Bedford et al 2009) [Delta4PT, 

Scandidos, Sweden; hereafter “the phantom”] that was placed on an in-house 

modified (Ravkilde et al 2013b) programmable motion stage (Malinowski et al 

2007). The motion stage reproduced eight patient-measured tumour trajectories 

representing different motion patterns (Keall et al 2011); four lung trajectories 

(“Typical” motion, High-frequency breathing, Predominantly left-right motion, 

and Baseline shifts) and four prostate trajectories (Continuous drift, Persistent 

excursion, Transient excursion, and High-frequency excursions). For the lung 

trajectories, prediction was used to compensate for the 140 ms tracking system 

latency (Ravkilde et al 2011). For each trajectory, two 6 MV 358° single-arc 

RapidArc VMAT plans (one low and one high modulation) were delivered to the 

phantom (Ravkilde et al 2013a, Poulsen et al 2012a). The VMAT treatments were 

delivered for each trajectory with and without MLC tracking, as well as to a static 

phantom for reference. Treatment times, monitor units (MU), and results of dose 

measurements have been described in our previous work (Ravkilde et al 2013a). 

After completion of the experiments, Dynalog MLC log files (Litzenberg et 

al 2002) and tracking log files from the tracking program were collected and 

synchronized to the time-resolved dose data measurements. To facilitate direct 

comparison of the time-resolved doses between different experiments (e.g. with 

and without motion), the dose measurements were down-sampled from steps 

with equal duration (13.9 ms) to steps of 100 dose pulses (mean temporal 
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resolution of 499 ms [standard deviation: SD=75 ms]). The same step size was 

used in the dose reconstruction.  

Dose reconstruction algorithm 

A simple dose reconstruction algorithm was implemented in Matlab 

version R2011a (The Mathworks Inc., MA) for offline reconstruction of the time-

resolved evolution of dose distributions. The algorithm builds upon a simplified 

version of the pencil beam convolution (PBC) algorithm by Storchi and 

collaborators (Storchi et al 1999, Storchi and Woudstra 1996, 1995), which is 

implemented in a slightly modified version in the Eclipse treatment planning 

system (TPS) [Varian Medical Systems]. In their PBC algorithm the dose in a 

voxelized water equivalent block is calculated in at least five planes at different 

depths by convolution of single pencil beam (SPB) 2D scatter kernels with a 

normalized fluence, and converted to other depths by interpolation of 

percentage depth dose (PDD) along the ray lines and by inverse square law 

scaling. 

Realizing that the most computationally intensive parts of this PBC 

algorithm are convolutions and ray tracing, we have simplified these two parts in 

our algorithm. Firstly, a relative lateral dose distribution is computed from 

convolution of the normalized fluence with the scatter kernel in one plane; the 

isoplane, rather than five planes. Secondly, rather than calculating the dose to a 

full 3D grid of voxels, many of which may not be needed, the algorithm calculates 

the dose in an arbitrary set of points defined by the user. This has several 
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benefits, the most obvious being that the calculation can be restricted to the 

points needed. In addition to this, utilizing that the phantom is homogeneous, no 

discretization of voxels exist and no ray tracing is needed to calculate the dose. 

Furthermore, the position of the calculation points may be adjusted individually 

throughout treatment, effectively mimicking motion, rotation and/or 

deformation. Thus, it is a more general description in the sense of calculation 

points and motion but not in the sense of density changes. 

 

Figure 1 Schematic representation of the reconstruction model (not to scale). The cylindrical phantom is 

outlined with grey patches. The surrounding box illustrates the effect of neglecting the phantom surface 

obliquity. At time � a calculation point (�, �, �) within the phantom is projected onto the isoplane at 

(��	 , ��	 , �
��), taking into account the displacement  
(�) of the phantom centre from the isocenter. The 

MLC is shown in grey and the resulting relative dose in the isoplane ����, ��, �
��; �� is shown as a colour 



 

9 
 

wash. The gantry is rotated � degrees. The source-to-axis distance (SAD), source-to-surface distance (SSD), 

and the depth of the isoplane �
�� are also shown for completeness. 

Figure 1 shows a schematic representation of the model for the fast 

motion-including (FMI) dose reconstruction. Calculation points can be chosen 

arbitrarily within the phantom and are shifted according to the current phantom 

position measurement 
(�)  in order to model translational motion. For a 

calculation point (�, �, �) the projected point on the isoplane is 

���	 , ��	 , ����� = �� SAD
SSD + �		 , �

SAD
SSD + �		 , ����", 

where the source-axis distance SAD = 100 cm is the distance between the beam 

source and the isoplane and the source-surface distance SSD is the distance 

between the source and the phantom surface. The dose delivered at (�, �, �) in 

an infinitesimal time interval #� at time � is calculated as 

$(�, �, �; �) = %���	 , ��	 , ����; �� ⋅ $'(�; �) ⋅ () 	#� ⋅ *+(�) ⋅ *, ,	

where %���, ��, ����; �� is relative dose in the isoplane (dimensionless), $'(�; �) 

is absolute depth dose on the central axis of a beam calibration field (units 

Gy/MU), ()  is the dose rate (units MU/s), *+(�) is a density correction factor 

(dimensionless), and *, is a gantry dependent attenuation correction factor due 

to material between the beam source and the phantom (couch etc.) 

[dimensionless].  Each of these factors will be described in detail below. 

The relative isoplane dose is calculated for each point in time by 

convolution of the field intensity function with a pencil beam kernel: 

%���, ��, ����; �� = -���, ��; �� ∗ /(��, ��). 
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The field intensity function -���, ��; �� describes the field shape and blocking in 

the field at time � and takes values of 1 in an open beam, 0 behind collimator 

jaws, and 0.019 for points shielded only by MLC leaves. The leaf transmission 

factor of 0.019 for these 6 MV beams was taken from the Eclipse TPS at our 

clinic. The kernel matrix /(��, ��) was constructed from a rotation symmetric 

SPB kernel (Storchi et al 1999) extracted from the TPS. While the SPB kernels 

were available for five different depths (1.5, 5, 10, 20 and 30 cm) only the kernel 

at 10 cm depth was used, that being approximately the radius of the cylindrical 

Delta4PT phantom (11 cm) and thus also the approximate depth of the 

isoplane	���� for a static phantom. The SPB kernel radius was truncated from 28 

cm to 2.5 cm to allow faster computation. The truncation removed 0.5% of the 

area under the kernel. The intensity profile of the beam was assumed completely 

flat. 

Scaling to absolute dose and to other depths than the isoplane was done 

by multiplication with a single measured PDD in water for a 10×10 cm2 field, 

which was renormalized to absorbed dose per MU according to beam calibration 

and corrected for changing SSD: 

$'(�; �) = PDD2�34(�) ⋅ *5(�; �) ⋅ *�(�) 

PDD2�34(�) = 	 1	Gy100	MU
PDD(�)
PDD(�<'=) 

*5(�; �) = � SSD + �<'=SSD<'= + �<'=
SSD<'= + �
SSD + � "

>
 

*�(�) = �SSD<'= + �<'=SSD + �<'= "
>
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SSD = SSD�?'?�< + @A(�). 
Here *5(�; �) is Mayneord’s F factor (Mayneord and Lamerton 1941) and *�(�) is 

an inverse square law correction factor, both taking into account the position of 

the moving phantom by the �-component @A(�) of the phantom displacement 

vector 
(�). The measured PDD curve was obtained from commissioning data 

files for the TPS. At our institution, the beam is calibrated to 1 Gy per 100 MU at 

depth �<'= = 5	cm  for SSD<'= = 95	cm  with a 10×10 cm2 field. With the 

phantom centre aligned with the isocenter the source-surface distance is 

SSD�?'?�< = 89	cm. 

Since the Delta4PT phantom is not made of water, we applied a density 

correction factor using the equivalent path length (or effective depth, �GHH) 

method; 

*+(�) =
PDD(�GHH)
PDD(�) �SSD + �GHHSSD + � "

>
 

�GHH = � ⋅ IG , 

where IG is the electron density of the medium (PMMA in this case) relative to 

water as determined by Thomas (1999). The CT image used in the TPS revealed a 

density of the Delta4PT phantom of 217 HU, corresponding to an electron 

density of 1.11 relative to water. 

At posterior gantry angles the entrance beam passed through the couch, 

the RayPilot couch top, and the motion stage platform carrying the Delta4PT 

phantom (Ravkilde et al 2013b). The total attenuation of these objects was 

measured as a function of gantry angle J for the central diode in the phantom 
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and used as a common gantry dependent correction factor *, for all points in the 

reconstructed dose. The angle dependency of the diodes is corrected for in the 

measurements by the Delta4PT software. 

No corrections were done for the surface obliqueness of the phantom, as 

illustrated by the cube surrounding the phantom in Figure 1.  

Comparison with measurements 

Dose	

The difference between the FMI reconstructed dose and the measured 

dose was calculated for each diode at each point in time, and its mean (and SD) 

over all diodes and times was reported. The dose difference was calculated 

relative to the maximum dose for each corresponding point in time in the 

measured static reference. Positive values correspond to overestimation of 

doses by FMI and negative values to underestimation. Detectors with final 

accumulated doses below 5% of the maximum accumulated dose in the 

measured static reference were excluded in the calculations. 

Motion-induced	dose	error	

For each plan, each of the measured dose distributions delivered during 

motion were first compared with the measured static reference dose distribution 

at each point in time using a γ-test (Low et al 1998) with the global 3%/3 mm 

criteria also used for daily QA in our clinic. Then, each of the FMI reconstructed 

dose distributions during motion were similarly compared with the FMI 
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reconstructed static reference dose distribution at each point in time using a 

3%/3 mm γ-test. Finally, the root-mean-square (rms) deviation between the 

time-resolved measured and reconstructed motion-induced γ failure rates was 

found. The time-resolved γ-test was developed in-house (Ravkilde et al 2013a) 

and optimized specifically for the Delta4PT geometry (combined 2D γ-tests for 

the two detector planes, similar to the calculations by the commercial Delta4PT 

software when using a previous measurement as reference). Similar to the 

comparison of measured and reconstructed doses, the percentage dose 

difference inherent in the γ-test was calculated relative to the maximum dose for 

each corresponding point in time in the measured static reference. Again, 

detectors with final accumulated doses below 5% of the maximum accumulated 

dose in the measured static reference were excluded. To quantify how robustly 

the FMI reconstruction estimated whether dose errors were above or below 

some pre-defined action level, a sensitivity analysis was performed based on the 

action level of 10% γ failure also used in the daily QA in our clinic. 

Results	

Dose 

Averaging over all experiments, diodes, and time points, the measured 

doses were reconstructed with a mean dose difference of -0.6% (SD=8.1%) for 

transient doses and -0.5% (SD=5.5%) for cumulative doses. For the accumulated 

doses over the complete arc fields, doses were reconstructed with a mean dose 

difference of -1.1% (SD=5.2%). Table 1 compiles the results stratified into 
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intensity modulation complexity and static, motion without tracking, or motion 

with tracking, while Figure 2 shows the distribution of dose differences as a 

function of relative doses for all experiments, diodes, and time points.  

Table 1 Mean (and standard deviation) of dose differences between reconstructed and measured time-

resolved dose distributions. Unit: % of max dose. 

Plan Static No tracking Tracking All 

Transient     

Low modulation -0.2 (7.7) -0.2 (8.6) -0.22 (8.0) 
-0.6 (8.1) 

High modulation -0.8 (8.0) -0.9 (8.0) -0.8 (8.2) 

Cumulative     

Low modulation 0.2 (6.0) 0.3 (5.9) 0.3 (6.1) 
-0.5 (5.5) 

High modulation -1.0 (5.8) -1.0 (5.0) -0.9 (5.0) 

Accumulated     

Low modulation -0.4 (5.4) -0.4 (5.4) -0.4 (5.4) 
-1.1 (5.2) 

High modulation -1.7 (5.7) -1.8 (4.8) -1.5 (4.8) 

 



 

15 
 

 

Figure 2 Mean (dots) and standard deviation (vertical line segments) of the dose differences between 

reconstructed and measured doses shown as a function of relative dose. Relative doses of all time points 

were divided into bins of 10%. A dashed horizontal line marks the level of no difference. 
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Figure 3 Comparison of measured and reconstructed doses for high modulation VMAT of a lung tumor 

travelling along the Baseline shifts motion trajectory without MLC tracking. Left: 2D measured and 

reconstructed dose distributions in a detector plane. Right: dose profiles for the measured (thick curves) 

and reconstructed (thin curves) doses along the white lines marked on the 2D dose distributions. Circles 

mark the actual diode measurements and triangles the reconstructed doses in the diode points. Lines 

mark interpolated values (cubic spline). Row (A): transient doses for a time interval of 0.5 seconds at 

gantry angle 140° with overlay showing the MLC aperture. Row (B): cumulative doses at gantry angle 

140°. Row (C): final accumulated doses. The time of 140° gantry angle is marked as a dashed vertical line 

in Figure 4. 
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Figure 4 Measured (thick curves) and reconstructed (thin curves) doses to three sample diodes in the 

phantom for high modulation VMAT of a lung tumor travelling along the Baseline shifts motion trajectory 

without MLC tracking; (A) the diode in the center of phantom, (B) a diode in a high dose gradient, and (C) 

a diode in the periphery of the phantom. Transient doses are shown in the left column and the resulting 

cumulative doses in the right column. The dashed vertical lines mark the time of the doses shown in 

Figure 3 rows (A) and (B). 

The reconstruction predominantly underestimated doses in low dose 

regions and overestimated doses in high dose regions (Figures Figure 2-Figure 3). 

There was in general good agreement between reconstructed and measured 

doses in the high dose gradient regions (Figure 3), although with a generally 

higher spread in the intermediate dose range of the penumbra than in the low 

and high dose ranges (Figure 2). Altogether this indicates that the overall shapes 

of the reconstructed doses were well reconstructed, while the reconstruction did 
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not perform as well at dose plateaus. The temporal evolution of dose was also 

well reconstructed, as illustrated by the synchrony of the measured and 

reconstructed transient dose curves in Figure 4. 

The mean computation time was 35.9 ms (SD=2.0 ms) for each transient 

dose distribution calculation in Matlab (1069 diode points) including overhead on 

a standard laptop equipped with an Intel® Core™ i5-M460 CPU running at 2.53 

GHz. Computation times of the FMI dose reconstruction scaled sublinearly with 

the number of calculation points. 

Motion-induced dose error 

The dose distributions of the moving phantom were compared with the 

static reference dose distribution to quantify the motion-induced dose errors in 

both experiments and in the reconstructions hereof (illustrated in Figure 5). 

Although the FMI dose error reconstructions indicate patterns of erroneous dose 

deposition, dose error distributions were reconstructed with some uncertainty 

for transient doses (Figure 5). For cumulative and final accumulated doses, 

however, the spatial distribution of measured dose errors were well 

reconstructed, allowing pinpointing positions of erroneous dose deposition 

throughout beam delivery. The resulting γ failure rates for the high modulation 

VMAT plans are shown in Figure 6 and Figure 7. The γ failure rates of all 

experiments and the reconstructions thereof are summarized in the scatter plots 

in Figure 8.  
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Figure 5 Comparison of measured and reconstructed 2D distributions of motion-induced dose errors in a 

detector plane for high modulation VMAT of a lung tumor travelling along the Baseline shifts motion 

trajectory without MLC tracking (same experiment at the same time points as in Figure 3). Left: dose 

differences. Right: γ index maps. Row (A): transient doses for a time interval of 0.5 seconds at gantry 

angle 140° with overlay showing the MLC aperture. Row (B): cumulative doses at gantry angle 140°. Row 

(C): final accumulated doses. 
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Figure 6 Comparison of measured (thick curves) and reconstructed (thin curves) 3%/3 mm γ failure rates 

during the high modulation VMAT deliveries to a lung tumour travelling along each of the lung tumour 

motion trajectories without (top panel) and with (bottom panel) tracking. The γ failure rate is shown for 

both transient doses (rows (A) and (C)) and cumulative doses (rows (B) and (D)). Note the different y-

scales between rows. 
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Figure 7 Comparison of measured (thick curves) and reconstructed (thin curves) 3%/3 mm γ failure rates 

during the high modulation VMAT deliveries to a prostate tumour travelling along each of the prostate 

motion trajectories without (top panel) and with (bottom panel) tracking. The γ failure rate is shown for 

both transient doses (rows (A) and (C)) and cumulative doses (rows (B) and (D)). Note the different y-

scales between rows. 

 

Figure 8 Scatter plots of reconstructed vs. measured 3%/3 mm γ failure rates for transient, cumulative, 

and accumulated doses. The line of unity is shown for reference. 
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Some uncertainty was present in the reconstruction of transient dose 

errors (Figure 8 left), but the transient errors tended to average out in the 

cumulative dose errors (Figure 8 middle). For all motion experiments, both with 

and without tracking, the γ failure rates were well reconstructed for cumulative 

dose errors throughout beam delivery, and hence also for final accumulated 

dose errors. Only the “Typical” lung tumour trajectory delivered without tracking 

had considerable discrepancy between measured and reconstructed motion-

induced γ failure rates (Figure 8 right). This was the case for both high and low 

modulation VMAT plans. The discrepancy was a result of a systematic 

underestimation of the transient γ failure rate in the reconstruction (Figure 6 row 

(A), first column) caused by a range of diodes that just fulfilled the 3%/3 mm 

criterion in the reconstruction while they just failed the criterion in the 

experiments. This led to an underestimation of the cumulative dose error 

throughout beam delivery (Figure 6 row (B), first column). For these two cases, 

both measured and reconstructed cumulative dose errors were above 40% γ 

failure throughout most of the beam delivery. 

Averaging over all experiments, the rms deviations between 

reconstructed and measured motion-induced γ failure rates were 6.3% (transient 

dose), 2.6% (cumulative dose), and 2.7% (accumulated dose). Assuming an action 

level of 10% γ failure in cumulative dose, the sensitivity (fraction of true 

positives) of the FMI dose error reconstruction was 93.0% and the specificity 

(fraction of true negatives) was 97.5%. The false positives (i.e. the 7% cases with 

a cumulative γ failure rate below 10% despite the FMI dose error reconstruction 
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predicting a γ failure rate above 10%) had a median γ failure rate of 11.2%. The 

false negatives (i.e. the 2.5% cases with γ failure rate above 10% despite the FMI 

dose error reconstruction predicting a γ failure rate below 10%) had a median γ 

failure rate of 9.4%. 

The mean computation time was 259.4 ms (SD=9.5 ms) for each transient 

or cumulative γ-test including overhead for a mean of 535 (SD=140) calculation 

points. 

Discussion	

The FMI algorithm for motion-including dose (error) reconstruction was 

demonstrated and experimentally validated in two orthogonal planes for 

complex rotational RT treatments delivered to a moving phantom with and 

without MLC tracking. The algorithm was created in order to allow real-time 

monitoring of dose deposition to moving targets during radiotherapy treatments 

with possible intervention in case of gross treatment errors. The FMI algorithm 

reconstructed motion-induced γ failure rates with 2.6% (cumulative dose) and 

2.7% (accumulated dose) rms deviation of measured values. These results are 

comparable to reconstructions of the same experiments using a TPS and motion-

mimicking treatment plans, which achieved a rms deviation of 1.5% for 

accumulated doses (Ravkilde et al 2013b). The higher deviation using FMI dose 

error reconstruction is mainly due to the two non-tracking lung VMAT plan 

deliveries to the phantom reproducing the “Typical” lung tumour trajectory. Both 

of these had γ failure rates in cumulative dose exceeding 40% (substantially 
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higher than any other delivery) for both measured and reconstructed doses. This 

is much higher than the action level of 10% γ failure taken from the daily QA 

protocol at our clinic and used in the sensitivity analysis. High sensitivity and 

specificity of the FMI dose error reconstruction was demonstrated for this 10% 

action level. Similar numbers were found for action levels of 5% and 20% γ 

failure. These results support the use of the FMI dose error algorithm for real-

time 4D treatment verification. 

The immediate purpose of the algorithm is to avoid gross treatment 

errors. Thus, if the action level is exceeded, the treatment could be halted either 

automatically or by the operator. Alternatively, a beam hold could be applied 

until the error level (calculated on a would-be dose increment) is again lower 

than the action level. For non-tracking treatments, such a scenario would 

correspond to what might be called dose-based gating, i.e. gating where the 

decision of triggering the beam on and off is based on dosimetric deviation. This 

approach would be more clinically relevant than the current clinically used gating 

scheme where the triggering of the beam is instead based on geometric 

displacement. While dose errors were induced by motion in the present study, 

errors of the same dosimetric magnitude due to other origins, e.g. MLC errors, 

can also be picked up by the algorithm. 

Computational speed is important for many dose calculation algorithms 

(Vassiliev et al 2010, Men et al 2009, Ziegenhein et al 2013, Hissoiny et al 2011) 

and crucial for algorithms intended for real-time intrafractional use. We believe 

that the present temporal resolution of approximately 500 ms would be 
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sufficient for online real-time monitoring of dose error evolution during 

treatment delivery, and comparable resolutions in dose pulses and time were 

indeed also used in a recent study of real-time verification of superficial doses 

(Jarvis et al 2014). Online use of the FMI dose error algorithm should therefore 

be possible since it computed cumulative dose and evaluated cumulative errors 

in dose in several hundred points by γ failure rates in 36 ms + 259 ms, i.e. well 

below the temporal resolution of the dose data presented here. To reduce 

computation time further, the motion-induced dose errors could instead be 

quantified by the χ-formalism (Bakai et al 2003).  

Online use of the FMI dose error algorithm would allow continuous 

feedback of the correctness of the dose in key target positions, the treated 

region as a whole, or any desired distribution of positions in real time during 

beam delivery. The decoupling of calculation points from voxels natively 

supports the utilization of patient specific monitoring without restrictions on 

spatial resolution or requirements of calculation in positions that are of less 

importance (Lu 2010, Dua and Srinivasan 2008). Furthermore, since motions can 

be applied separately for each calculation point, inclusion of time dependent 

rotations and deformations is also possible. 

Alternative use of an online dose error calculation could be on-the-fly 

repair of erroneous dose delivery in MLC tracking treatments, where knowledge 

of errors in the present cumulative dose is used online when fitting the MLC 

leaves to the current target position. Knowledge of hitherto accumulated dose 

errors in a specific volume could be a help when deciding the best option of 
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opening or closing an MLC leaf during MLC tracking. Another alternative use 

could be integration of the FMI dose algorithm with an MLC tracking simulator 

(Poulsen et al 2013). This would enable dosimetric evaluation of MLC tracking 

with large sets of treatment plans and target motions that are practically beyond 

reach of time-consuming phantom experiments. Such large scale simulations 

have great potential for pre-treatment QA of MLC tracking, evaluations of 

tracking robustness for specific plans, investigation of tracking system designs, 

and for scientific studies of the clinical benefit of tracking.  

While the FMI algorithm provided good estimations of dose error, the 

dose itself was subject to some uncertainty. The higher spread of dose 

differences in the penumbra is likely due to random imperfections in the 

alignment of the phantom and the aperture, e.g. because of noise in the target 

localization signal. However, due to the high dose gradient in the penumbra, 

such large dose differences as seen in Figure 2 may be generated by small spatial 

offsets. The mean dose difference between measured and reconstructed doses 

was within 1% for both moving and static targets but with a large standard 

deviation of up to 8%, which is poor compared to recent dose reconstruction 

algorithms (Vassiliev et al 2010, Nelms et al 2012, Poulsen et al 2012b). The 

algorithm overestimated the dose in high dose regions while underestimating 

the dose in low dose regions. This is in part due to less smearing of the dose in 

the reconstructions than in the measurements, owing to the truncated SPB 

kernel. Furthermore, the dose in high dose regions was overestimated because 

the field size in the algorithm was fixed to 10×10 cm2, thereby ignoring changing 
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output factors and PDD shapes with field size. The lung plans, for instance, had 

considerably smaller field sizes (5×5 cm2 or less). Underestimation of dose in low 

dose regions is also seen in other studies using PBC algorithms (Belec and Clark 

2013). Using an SPB kernel at just a single depth means that the part of 

penumbra widening that comes from phantom scatter is not modelled – only the 

penumbra widening due to beam divergence is modelled. The missing correction 

for surface obliqueness is negligible close to the central axis but adds additional 

uncertainty in the periphery of the phantom. The plans used here were 

sufficiently confined to the central part of the phantom to be negligibly affected. 

Also, the gantry-dependent attenuation is not equal for all diodes as assumed in 

the attenuation correction factor, which again adds to the uncertainty of the 

reconstruction. 

A notable source of uncertainty may be found in the simplicity of the 

density correction, and, although not a problem for the homogeneous phantom 

used here, doses should be considered with due care for inhomogeneous 

objects. It is an obvious limitation that the FMI algorithm only reconstructs doses 

and dose errors to the homogeneous Delta4PT phantom and not to the patient. 

Therefore, the FMI reconstructed doses and dose errors may not be completely 

coherent with those actually occurring in the patient, especially for radiation to 

highly inhomogeneous tumour sites, such as the thorax. It is, however, in 

accordance with common QA procedure to measure both lung and prostate 

plans using a homogeneous phantom (Bedford et al 2009, Sadagopan et al 2009, 

Chandraraj et al 2011), and in line with 3D reconstructions of dose to a water-
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filled body using in vivo portal dosimetry for inhomogeneous tumour sites 

(Wendling et al 2012, Mans et al 2010a).  It is also in line with other work linking 

motion-induced dose perturbations in a patient with those in a homogeneous 

phantom (Feygelman et al 2013, Stambaugh et al 2013). In essence, the FMI dose 

error reconstruction provides the same kind of plan deliverability measure as the 

standard pre-treatment QA performed in our clinic using the Delta4PT 

dosimeter, but allows in-treatment use during irradiation and inclusion of target 

motion, as was the intention of the immediate study. 

Clinical implementation of real-time FMI would require fast access to 

machine parameters and targets positions during treatment delivery and, 

preferably, porting of the code to a faster programming language in a standalone 

package that is more suitable in a clinical environment than the current Matlab 

implementation. Besides an online implementation, future development will 

work towards a refined FMI algorithm that provides more exact dose 

reconstruction calculated for the actual patient anatomy. Potential 

improvements of the algorithm could be to include PDDs and output factors of 

different field sizes, or avoiding truncation of the scatter kernel, which may 

require Fast-Fourier Transform convolution to uphold similar computational 

speed. Surface obliqueness can also be approximated at relatively little 

computational cost, which leaves scatter as a function of depth and fast 

inhomogeneity correction as the remaining major challenges for computing 

actual dose to inhomogeneous tumour sites in real time. 
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In the meantime, the presented FMI dose error algorithm may expand 

current clinical phantom-based QA procedures to real-time intrafractional use 

with inclusion of motion. This is particularly important for MLC tracking where 

neither the target motion nor the MLC movements are known beforehand. While 

accurate reconstruction of dose is crucial for planning and follow-up, the main 

interest during irradiation is how well the planned dose is being delivered, i.e. 

how much the actual cumulative dose looks like the intended cumulative dose. In 

other words, the FMI dose error reconstruction provides a good estimate of the 

main quantity of interest during irradiation. In vivo QA has also been 

demonstrated by portal dosimetry (Prabhakar 2013, van Elmpt et al 2009, Mans 

et al 2010b). However, these treatment verification techniques either do not 

include target motion, are not applicable in real time, or both. Motion-including 

3D dose reconstructions have been made (Bol et al 2012, Azcona et al 2014), but 

are again not applicable on a real-time scale. To our knowledge, the FMI 

algorithm is the first method feasible for 4D motion-including dose (error) 

reconstruction in real time. Although this study focused on MLC tracking, the FMI 

algorithm is also directly applicable for other types of tracking on a standard 

linear accelerator, such as couch tracking (D’Souza et al 2005). 

Conclusions	

A fast motion-including dose reconstruction algorithm was created. Its 

ability to reproduce motion-induced dose errors, similar to those of a standard 

pre-treatment QA tool throughout beam delivery, was validated experimentally 
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for VMAT treatments with and without MLC tracking. While absolute doses are 

subject to some uncertainty, the FMI dose error reconstruction allows accurate 

temporal and spatial pinpointing of errors in the dose delivered to moving 

targets that could be due to both target motion and erroneous motion or 

behaviour of linear accelerator parts. The computation speed of the algorithm 

makes it feasible for real-time use. With an online implementation, it may be 

used for treatment intervention in case of erroneous dose delivery in both 

tracking and non-tracking treatments. Apart from being well suited for 

intrafractional QA, the FMI dose error algorithm may be used for large scale 

studies of motion-induced dose error and evaluations of MLC tracking plans 

pending development of an MLC tracking simulator.  
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