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Abstract 

Background and purpose 

The impact of audiovisual (AV) biofeedback on four dimensional (4D) positron emission 

tomography (PET) and 4D computed tomography (CT) image quality was investigated in a 

prospective clinical trial (NCT01172041). 

 

Material and methods 

4D-PET and 4D-CT images of ten lung cancer patients were acquired with AV biofeedback 

(AV) and free breathing (FB). The 4D-PET images were analyzed for motion artifacts by 

comparing 4D to 3D PET for gross tumor volumes (GTVPET) and maximum standardized 

uptake values (SUVmax). The 4D-CT images were analyzed for artifacts by comparing 

normalized cross correlation-based scores (NCCS) and quantifying a visual assessment score 

(VAS). A Wilcoxon signed-ranks test was used for statistical testing. 

 

Results 

The impact of AV biofeedback varied widely. Overall, the 3D to 4D decrease of GTVPET was 

1.2 ± 1.3 cm3 with AV and 0.6 ± 1.8 cm3 for FB. The 4D-PET increase of SUVmax was 1.3 ± 

0.9 with AV and 1.3 ± 0.8 for FB. The 4D-CT NCCS were 0.65 ± 0.27 with AV and 0.60 ± 0.32 

for FB (p = 0.08). The 4D-CT VAS was 0.0 ± 2.7. 

 

Conclusion 

This study demonstrated a high patient dependence on the use of AV biofeedback to reduce 

motion artifacts in 4D imaging. None of the hypotheses tested were statistically significant. 

Future development of AV biofeedback will focus on optimizing the human–computer interface 

and including patient training sessions for improved comprehension and compliance. 

 

 

  



Introduction 

Respiratory motion causes artifacts in positron emission tomography (PET) and computed 

tomography (CT). In PET imaging, respiratory motion artifacts may result in underestimation of 

the corresponding standardized uptake value (SUV) and overestimation of the tumor volume [1]. 

In CT imaging, respiration may cause the four types of artifacts (blurring, duplicate structure, 

overlapping structure, and incomplete structure) which potentially deteriorate the quality of CT 

images [2]. Thus, respiratory motion management is needed to mitigate such artifacts, which is 

achieved through four-dimensional (4D) imaging. 

 

However, 4D imaging may fail to reduce artifacts if breathing is irregular during data acquisition 

due to inadequate respiratory motion sampling for image reconstruction [2], [3]. For this reason, 

respiratory training or coaching is a commonly used technique to reduce irregularity in breathing 

cycles. Among the techniques, audiovisual (AV) biofeedback is a real-time, interactive and 

personalized system designed to help a patient self-regulate their breathing, demonstrating a 

reduction in the average cycle-to-cycle variations in respiratory amplitude and period by up to 

50% and 70%, respectively [4]. To date, only two studies have investigated the impact of 

breathing training on anatomic imaging such as MRI and CT [5], [6]; however, no investigation 

has been performed for the impact of AV biofeedback on functional imaging. Therefore, for the 

first time, the impact of AV biofeedback was evaluated on 4D-PET and 4D-CT imaging in a 

patient study. 

 

Materials and methods 

Data acquisition 

In an institutional review board (IRB)-approved prospective clinical trial (NCT01172041), 

eligibility criteria for 10 lung cancer patients (age ⩾ 18) included a diagnosis of AJCC Stage I–

IV lung cancer of any histology and Karnofsky Performance Status ⩾ 50. The patients were 

scanned in pre-treatment, except patients 4 (post-treatment) and 5 (mid-treatment), with arms 

raised above their head on a Discovery ST PET/CT scanner (GE Healthcare, Waukesha, WI) 

along with a real-time position management (RPM) system (Varian Medical Systems, Palo Alto, 

CA). In each scan, 4D-PET and 4D-CT data with AV biofeedback (AV) and free breathing (FB) 

were acquired consecutively in the same session [4]. 

 

4D-PET and 4D-CT imaging 

In 4D PET, PET raw data were acquired in list-mode for respiratory-correlated gating [7]. Data 

acquisition time for the second 4D-PET scan was increased to compensate for total activity 

decaying (Table 1). The 4D-PET data were sorted into six bins by phase-based sorting using GE 

Respiratory Gating Toolbox. For attenuation correction (AC), averaged-CT (ACT) was 

consistently employed to reduce a spatial misalignment, caused by irregular respiratory motion, 

between PET and CT. The exceptional use of six-bin gated CT was allowed for patient 8 because 

ACT failed to cover the tumor motion trajectory (>20 mm). PET images were reconstructed 

through the Ordered Subset Expectation Maximization (OSEM) algorithm (21 subsets, 2 

iterations, and 6 mm FWHM Gaussian post filter) with the voxel size of 2.3 × 2.3 × 3.75 mm3. 



Additionally, 4D CT were acquired in cine mode with parameters as follows: 120 kVp, 

approximately 100 mAs per slice, 0.5 s gantry rotation, 0.45 s cine interval, and 8 slices with the 

voxel dimension of 1.0 × 1.0 × 2.5 mm3[8]. The oversampled CT slices were then sorted into ten 

respiratory bins by phase-based sorting [9]. 

Quantification 

In 4D-PET analysis, hypotheses are (H1) AV biofeedback increases GTV difference between 3D 

and 4D PET more than FB and (H2) AV biofeedback increases SUVmax difference between 3D 

and 4D PET more than FB, based on the commonly accepted ideas that 4D-PET GTV is smaller 

than 3D-PET GTV and that 4D-PET SUVmax is higher than 3D-PET SUVmax[10]; these 

differences are expected to be increased if respiratory motion becomes more regular. In the 

analysis, only tumors showing motion greater than 5 mm, the suggested level at which explicit 

motion management should be considered, were included as PET signals were focused in the 

tumor area [11]. Although there is no standardized method for automatic segmentation of GTV 

from PET images (GTVPET) due to the low spatial resolution and high noise characteristics of 

PET images [12], region growing was employed as a compromise of simplicity and complexity 

among various approaches [13]. To derive the GTVPET, each tumor volume was segmented 

automatically by region growing with various percentage thresholds (10–90%, steps of 10%) of 

SUVmax, and GTVPET closest to GTVCT was considered as an optimal tumor volume. This 

method was applied consistently for all patients except patient 3 in which the region growing 

algorithm did not result in a closed surface for the free breathing images, yielding an undefined 

volume. To allow the inclusion of patient 8’s data and ensure consistency between AV and FB in 

the study, a higher threshold was used for both AV and FB, of 80%. This necessarily yielded a 

smaller GTVPET than GTVCT for this patient. 

 

In 4D-CT analysis, hypotheses are (H3) AV biofeedback reduces artifacts determined via 

normalized cross correlation-based score (NCCS) and (H4) AV biofeedback reduces artifacts 

determined via visual assessment-based score (VAS). NCCS and VAS evaluated artifacts at the 

0% (peak-inhale), 30% (mid-exhale), 50% (peak-exhale) and 80% (mid-inhale) phases. A NCC-

based metric has been demonstrated to replicate the findings of human observers [14]. The VAS 

was determined by an observer (medical physicist) through comparing five pairs of coronal CT 

slices displayed side by side and blinded to the breathing method. The observer marked the slice 

that appeared to have fewer artifacts, yielding a score that represents how many times AV was 

selected to have fewer artifacts than FB and ranges from −5 to +5; i.e. positive scores mean AV 

has fewer artifacts than FB. All 10 patients were included in the CT analysis. 

 

Respiratory regularity, consistency of breathing patterns, was quantified through the root mean 

square error (RMSE) of displacement and period [4], [5]. The RMSE in period was computed 

from the each period of the individual breathing cycles. The RMSE in displacement was 

calculated from displacement variation of each sample (in a breathing cycle) with respect to a 

corresponding sample from the post priori guiding waveform in the phase domain. 

 



𝑅𝑀𝑆𝐸 𝑖𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =
∑ √∑

(𝑥𝑖 − 𝑦𝑖)2

360𝑖=1….360𝐴𝑙𝑙𝑐𝑦𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
 

 

where xi are the samples from each cycle of the patients waveform, yi are the samples from the 

post priori calculated average waveform at phase i for every degree of phase (hence 360°). A low 

value of RMSE is an indicative of a highly reproducible respiratory signal. 

 

The four hypotheses were tested statistically through a Wilcoxon signed rank test for paired 

samples: p < 0.05 indicates a statistically significant result. 

 

Results 

In 4D PET, the overall decrease of AV vs. FB GTVPET (H1) was 1.2 ± 1.3 vs. 0.6 ± 1.8 cm3, 

respectively, and the overall increase of AV vs. FB SUVmax (H2) was 1.3 ± 0.9 vs. 1.3 ± 0.8, 

respectively. In 4D CT, the overall result of AV vs. FB NCCS (H3) was 0.65 ± 0.27 vs. 0.60 ± 

0.32, respectively (p = 0.08), and the overall VAS (H4) was 0.0 ± 2.7. Although all the 

hypotheses were not statistically significant, the results had large variations between patients 

(Table 2), as shown in Fig. 1, Fig. 2. 

Fig. 3 shows the results of average breathing regularity through the RMSE with one-minute 

increments. For 4D-PET, there was an improvement of breathing regularity with AV during first 

10 min; however, the regularity decreased as training time advanced. The RMSE of 4D-PET 

respiratory traces (AV vs. FB) was 1.5 ± 0.7 vs. 1.6 ± 0.6 mm and 1.0 ± 0.5 vs. 1.7 ± 1.1 s (p = 

0.01) for displacement and period, respectively. However, the RMSE of 4D-CT respiratory 

traces (AV vs. FB) was 1.4 ± 0.7 vs. 1.3 ± 0.6 mm and 1.0 ± 0.6 vs. 0.9 ± 0.4 s for displacement 

and period, respectively. The results of breathing regularity varied widely with patients such as 

the results of images. 

Discussion 

This study investigated the impact of audiovisual (AV) biofeedback on 4D-PET image quality 

for the first time, on a cohort of ten lung cancer patients (five with tumor motion >5 mm); 4D-

CT image quality was also investigated. The results are equivocal: although a statistically 

significant reduction of motion blurring artifacts of AV over FB was not demonstrated for two 

functional 4D-PET imaging metrics, the result of patient 2 demonstrated the reduced motion-

blurring artifacts in Fig. 1(a). Similarly, although a statistically significant difference between 

AV and FB was not demonstrated for two anatomic 4D-CT imaging metrics, the result of patient 

5 demonstrated that reduced motion artifacts in Fig. 2(a). These study results fall between the 

previous positive and negative studies: the 15 volunteer MRI study demonstrated significant 

reductions in the variability of external and internal (diaphragm) motion with AV biofeedback 

[5]; however, the 13 patient 4D-CT study showed no improved match of target delineation using 

maximum intensity projection using breathing coaching with an abdominal or spirometer motion 

signal [6]. The presence of some negative results is of particular interest as it stimulates future 

investigation into why the intervention did not show a major improvement over no intervention. 



 

Particularly, it was observed that the underlying free breathing respiratory signal was often so 

poor, which brings follow-up questions: was this simply that the patients could not comply with 

the AV biofeedback instructions due to limited lung function, or did they not comprehend the 

task that they were asked to perform? A comprehensive technology assessment of the patient 

experience could form part of future studies to more clearly differentiate the cause of the limited 

improvement [15], [16]. Such a patient experience of technology study was conducted by 

Brédart et al. for respiratory gating [17]. 

 

Additionally, the overall poor improvement of breathing patterns with AV is not consistent with 

the positive results of the early version of AV biofeedback [18]. The most distinguishable 

discrepancies between the two studies are the average length of scan duration (19 vs. 4 min) and 

number of study sessions (1 vs. 5). For the lengthy scan duration, Fig. 3 shows that there is a 

window where the AV training appears most regular after an initial training period, and before 

fatigue sets in. For the number of study sessions, this study did not provide training sessions; 

while, the previous study involved five sessions per patient, showing the improved regularity 

over time per session [19]. These discrepancies demonstrate the importance of patient familiarity 

and optimal session length with AV biofeedback; in addition, improvements to the patient 

comprehension and human–computer interactions are needed to maximize the engagement and 

results that patients have with the AV biofeedback system. 

 

Generally, it is accepted that the introduction of coaching or training changes the patterns of free 

breathing, which was demonstrated by Persson et al. [20]; while, Goossens et al. demonstrated 

that audio/visual coaching achieved high internal/external correlation and reproducibility, 

suggesting real-time visual feedback with audio coaching for breathing reproducibility [21]. 

Considering the contrary results from the two literatures, it is too early to conclude anything 

about the effect of scan ordering (e.g., FB → AV or AV → FB), on breathing patterns. However, 

to avoid the problems that arise where the use of AV biases the patterns of FB, scans with AV 

were performed after those with FB for 8 patients, except patients 2 and 4 having the AV prior to 

the FB (Table 1). 

 

In conclusion, this study demonstrated a high patient dependence on the use of AV biofeedback 

to reduce motion artifacts in 4D imaging. None of the hypotheses tested were statistically 

significant. Future development of AV biofeedback will focus on optimizing the human–

computer interface and including patient training sessions for improved comprehension and 

compliance. 
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Table 1. Scan time of PET and scan order of 4D PET and 4D CT information for the 10 lung 

cancer patients recruited to the audiovisual (AV) biofeedback 4D imaging study. 

Patient 

# 

PET scan duration (# of bed 

positions) 

PET scan start time 

difference 

Scan order 

AV FB 

1 18 min (3) 30 min (6) 24.9 min FBPET → AVPETFBPET → FBCTFBPET → AVCT 

2 15 min (3) 16.5 min (3) 18.5 min AVPET → FBPET → AVCT → FBCT 

3 22.5 min (3) 21 min (3) 26 min FBPET → AVPET → FBCT → AVCT 

4 11 min (2) 10 min (2) 8.3 min AVPET → FBPET → AVCT → FBCT 

5 11 min (2) 10 min (2) 22.2 min FBPET → AVPET → FBCT → AVCT 

6 16.5 (3) 15 min (3) 22.5 min FBPET → AVPET → FBCT → AVCT 

7 7 min (1) 21 min (3) 36.4 min FBPET → FBCT → AVCT → AVPET 

8 6 min (1) 15 min (3) 44 min FBPET → FBCT → AVCT → AVPET 

9 5 min (1) 12 min (3) 43.5 min FBPET → FBCT → AVCT → AVPET 

10 6 min (1) 12 min (3) 12.9 min FBPET → AVPET → AVCT → FBCT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. AV biofeedback (AV) vs. free breathing (FB) for percentage decrease in GTVPET, 

percentage increase in SUVmax, RMSE displacement, and RMSE period. Percentage is quantified 

from the ratio of 4D-PET-measured value to 3D-PET-measured value. 

Patient 

# 

Decrease of tumor volume 

(%) 

Increase of 

SUVmax(%) 

RMSE displacement 

(mm) 

RMSE period 

(sec) 

AV FB AV FB AV FB AV FB 

2 22 ± 15% 15 ± 12% 18 ± 8.7% 13 ± 8.6% 0.6 1.1 0.4 0.9 

6 9.4 ± 5.8% 16 ± 4.7% 9.5 ± 3.9% 14 ± 3.7% 1.7 1.2 1.9 2.0 

8 64 ± 11% 75 ± 11% 26 ± 24% 35 ± 12% 1.1 3.0 0.6 1.3 

9 −28 ± 187% 27 ± 67% 24 ± 19% 25 ± 11% 2.7 1.5 1.5 1.1 

10 47 ± 24% −36 ± 112% 20 ± 12% 8.9 ± 8.6% 2.6 2.4 1.6 4.3 

 

 

 

  



 

 

Fig. 1. AV biofeedback (AV) vs. free breathing (FB) for 4D-PET. (a) Comparison of the AV and FB 4D-PET tumor 

images at peak inhalation (bin-6) for patients 2 and 6; (b) Comparison of GTV3D-PET and GTV4D-PET; (c) Comparison of 

SUVmax,3D-PET and SUVmax,4D-PET. The values for 4D-PET were averaged across all phases for 5 patients with mobile 

tumors. The error bar is standard deviation. 



 

Fig. 2. AV biofeedback (AV) vs. free breathing (FB) for 4D-CT. (a) Comparison of the AV and FB 4D-CT images 

at peak inhalation (0% phase) for patients 5 and 6. Artifacts are denoted by red arrows; (b) Average NCCS; (c) 

Average VAS across all phases for 10 patients. The error bar is standard deviation. 

 



 

 

 

Fig. 3. AV biofeedback (AV) vs. free breathing (FB) traces during CT and PET scans: overall 

time-averaged RMSE of (a) displacement and (b) period for all respiratory traces with one-

minute increments for 10 patients. 


