53 research outputs found

    Phylogenetic Analysis of the Socioecology of Neotomine-Peromyscine Rodents

    Get PDF
    This chapter focuses on the breeding systems of Neotomine-Peromyscine rodents. There are three specific objectives to this chapter. First, we describe the patterns for major Neotomine-Peromyscine clades using data collected from the literature (table 6.1). Second, we examine data from the literature on the following breeding behaviors: male spacing, female spacing, relative intersexual home range/territory size, paternal care, and juvenile dispersal patterns. We examine breeding behavior data in a phylogenetic framework to test if any phylogenetic patterns emerge in the observed variation in these breeding behaviors and if relationships occur among these behaviors. Third, we examine in a phylogenetic framework whether dietary, physiological, or life-history characteristics of the taxa are able to explain the observed variation in these breeding behaviors

    Differences in Ultrasonic Vocalizations Between Wild and Laboratory California Mice (\u3cem\u3ePeromyscus californicus\u3c/em\u3e)

    Get PDF
    Background: Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus. Methodology and Principal Findings: We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12- microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2–8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice. Significance: The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions

    Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse

    Get PDF
    . (2015). Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse. Hormones and Behavior, 70, 47-56. doi: 10.1016/j.yhbeh.2015.02.003 The steroid hormone testosterone (T) is a well-known mediator of male sexual behavior in vertebrates. However, less is known about T's rapid effects on sexual behavior, particularly those involving ultrasonic vocalizations (USVs), a mode of communication that can influence mate acquisition in rodents. Using the monogamous California mouse, Peromyscus californicus, we tested whether T rapidly alters male USV production by giving T or saline injections to nonpaired (sexually naΓ―ve) males and paired (paternally experienced and pair-bonded) males immediately prior to a brief exposure to an unrelated, novel female. Among non-paired males, no differences in the total number of USVs were observed; however, T increased the proportion of simple sweeps produced. Among paired males, T decreased the number of USVs produced, and this change was driven by a reduction in simple sweeps. These results suggest a differential rapid effect of T pulses between non-paired and paired males upon exposure to a novel female. Additionally, we observed a positive correlation in the production of USVs made between males and novel females, and this relationship was altered by T. Given the importance of USVs in sexual communication, our study supports an essential concept of monogamy in that mate fidelity is reinforced by decreased responsiveness to prospective mates outside of the pair bond. The central mechanism in pair bonded males that decreases their responsiveness to novel females appears to be one that T can trigger. This is among the first studies to demonstrate that T can inhibit sexually related behaviors and do so rapidly

    Effects of wastewater treatment plant effluent on bat foraging ecology in an urban stream system

    Get PDF
    Kalcounis-RΓΌppell, M.C., Payne, V., Huff, S.R., Boyko, A. 2007 To examine effects of WWTP effluent on terrestrial predators in this system we determined prey availability, bat community structure, and bat foraging and commuting behavior at sites above and below WWTPs. We predicted an effect of effluent in the riparian habitat specialist PerΓ­myotΓ­s subflaΟ…us but not the habitat generalists EptesΓ­cus fuscus, LasΓ­urus borealΓ­s, or NyctΓ­ceΓ­us humeralΓ­s. Nocturnal insect abundance was higher upstream of the WWTPs. There were more Diptera, Coleoptera, and Lepidoptera upstream of the WWTPs whereas there were more Odonata downstream of the WWTPs. There were more E. fuscus upstream of the WWTPs and more P. subflaΟ…us downstream of the WWTPs. Despite the difference in bat community structure up-and downstream of the WWTPs, bat commuting and foraging activity levels were the same; there was no difference in the total number of echolocation sequences we recorded per night up-and downstream of the WWTPs nor was there a difference in the proportion of those sequences that contained a feeding buzz. Our results suggest the effect of anthropogenic nutrients in the stream persists through higher food web trophic levels as we found impacts on nocturnal flying insects as well as two common species of insectivorous bats. PerΓ­myotΓ­s subflaΟ…us and E. fuscus may serve as easily tractable terrestrial bioindicators of water quality as influenced by WWTP effluent in this, and other, urban watersheds

    Differences in Ultrasonic Vocalizations between Wild and Laboratory California Mice (Peromyscus californicus)

    Get PDF
    BACKGROUND: Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus. METHODOLOGY AND PRINCIPAL FINDINGS: We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12-microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2-8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice. SIGNIFICANCE: The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions

    Production of ultrasonic vocalizations by Peromyscus mice in the wild

    Get PDF
    BACKGROUND: There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. RESULTS: We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. CONCLUSION: The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context

    Is Promiscuity Associated with Enhanced Selection on MHC-DQΞ± in Mice (genus Peromyscus)?

    Get PDF
    Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQΞ± locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQΞ± locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu

    Influence of Landscape Structure and Human Modifications on Insect Biomass and Bat Foraging Activity in an Urban Landscape

    Get PDF
    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (pβ€Š=β€Š0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats
    • …
    corecore