7,707 research outputs found

    Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods

    Full text link
    Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamical simulations for two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving-grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test both neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and post-bounce evolution of a 13 solar mass star with Newtonian gravity and a 15 solar mass star with relativistic gravity.Comment: 23 pages, 13 figures, revised version, to appear in Ap

    Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer

    Get PDF
    To ensure food supply, phosphorus must be recycled, for which an appealing method is using struvite fertilizer from human excreta. One struvite from black water and another from urine were assessed for safety under Dutch regulations, and for effectiveness as P fertilizer in a maize field experiment and a literature review. Both struvites contained 12% P, 12% Mg, 6% N, and 0.5-1.5% of several micronutrients. Struvites did not exceed Dutch regulations for heavy metals or pathogens, and based on literature, organic toxins should be far below regulatory limits. In this study and 18 others, struvite appears to have similar effectiveness to soluble fertilizer. Early in the season, 200 kg P2O5 ha-1 of black water struvite and soluble phosphorus improved maize performance (

    Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice

    Full text link
    We consider a model for a two dimensional electron gas moving on a kagom\'{e} lattice and locally coupled to a chiral magnetic texture. We show that the transverse conductivity σ_xy\sigma\_{xy} does not vanish even if spin-orbit coupling is not present and it may exhibit unusual behavior. Model parameters are the chirality, the number of conduction electrons and the amplitude of the local coupling. Upon varying these parameters, a topological transition characterized by change of the band Chern numbers occur. As a consequence, σ_xy\sigma\_{xy} can be quantized, proportional to the chirality or have a non monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Topological Hall effect and Berry phase in magnetic nanostructures

    Full text link
    We discuss the anomalous Hall effect in a two-dimensional electron gas subject to a spatially varying magnetization. This topological Hall effect (THE) does not require any spin-orbit coupling, and arises solely from Berry phase acquired by an electron moving in a smoothly varying magnetization. We propose an experiment with a structure containing 2D electrons or holes of diluted magnetic semiconductor subject to the stray field of a lattice of magnetic nanocylinders. The striking behavior predicted for such a system (of which all relevant parameters are well known) allows to observe unambiguously the THE and to distinguish it from other mechanisms.Comment: 5 pages with 4 figure

    Static and dynamic properties of the interface between a polymer brush and a melt of identical chains

    Full text link
    Molecular dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model with Lennard-Jones interactions between the beads and a FENE potential between nearest neighbors along the backbone of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and non-equilibrium Molecular Dynamics simulations at constant temperature and volume using the Dissipative Particle Dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The viscosity and slippage at the interface are calculated as functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy

    Numerical Simulation of an Electroweak Oscillon

    Full text link
    Numerical simulations of the bosonic sector of the SU(2)×U(1)SU(2)\times U(1) electroweak Standard Model in 3+1 dimensions have demonstrated the existence of an oscillon -- an extremely long-lived, localized, oscillatory solution to the equations of motion -- when the Higgs mass is equal to twice the W±W^\pm boson mass. It contains total energy roughly 30 TeV localized in a region of radius 0.05 fm. A detailed description of these numerical results is presented.Comment: 12 pages, 8 figures, uses RevTeX4; v2: expanded results section, fixed typo
    corecore