8 research outputs found

    The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power

    Get PDF
    We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; under 200 nm for inorganic species and under 2 μm for biomolecules) with the high mass-resolving power of an Orbitrap (>240,000 at m/z 200). This allows exogenous and endogenous metabolites to be visualized in 3D with subcellular resolution. We imaged the distribution of neurotransmitters—gamma-aminobutyric acid, dopamine and serotonin—with high spectroscopic confidence in the mouse hippocampus. We also putatively annotated and mapped the subcellular localization of 29 sulfoglycosphingolipids and 45 glycerophospholipids, and we confirmed lipid identities with tandem mass spectrometry. We demonstrated single-cell metabolomic profiling using rat alveolar macrophage cells incubated with different concentrations of the drug amiodarone, and we observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone

    The rotational and fine-structure spectrum of FeH, studied by far-infrared laser magnetic resonance

    No full text
    Transitions between the spin-rotational levels of the FeH radical in the υ=0 level of the X4Δ ground state have been detected by the technique of laser magnetic resonance at far-infrared wavelengths. Both pure rotational and fine-structure transitions have been observed; lambda-type doubling is resolved on all the observed transitions. The energy levels of FeH are strongly affected by the breakdown of the Born-Oppenheimer approximation and cannot be modeled accurately by an effective Hamiltonian. The data are therefore fitted to an empirical formula to yield term values and g factors for the various spin-rotational levels involved. Many of the resonances show a doubling that arises from the proton hyperfine structure

    Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene

    No full text
    Electrochemiluminescence (ECL) generated by a monolayer of a spirobifluorene derivative covalently bound onto an indium tin oxide (ITO) substrate is reported for the first time. Our approach allows the efficient preparation homogeneous and patterned substrates through micromolding in capillaries (MIMIC), and opens novel scenarios for multicolour ECL applications

    Performance of the B3LYP/ECP DFT Calculations of Iron-Containing Compounds

    No full text
    corecore