74 research outputs found

    Depth, Highness and DNR Degrees

    Get PDF
    A sequence is Bennett deep [5] if every recursive approximation of the Kolmogorov complexity of its initial segments from above satisfies that the difference between the approximation and the actual value of the Kolmogorov complexity of the initial segments dominates every constant function. We study for different lower bounds r of this difference between approximation and actual value of the initial segment complexity, which properties the corresponding r(n)-deep sets have. We prove that for r(n) = εn, depth coincides with highness on the Turing degrees. For smaller choices of r, i.e., r is any recursive order function, we show that depth implies either highness or diagonally-non-recursiveness (DNR). In particular, for left-r.e. sets, order depth already implies highness. As a corollary, we obtain that weakly-useful sets are either high or DNR. We prove that not all deep sets are high by constructing a low order-deep set. Bennett's depth is defined using prefix-free Kolmogorov complexity. We show that if one replaces prefix-free by plain Kolmogorov complexity in Bennett's depth definition, one obtains a notion which no longer satisfies the slow growth law (which stipulates that no shallow set truth-table computes a deep set); however, under this notion, random sets are not deep (at the unbounded recursive order magnitude). We improve Bennett's result that recursive sets are shallow by proving all K-trivial sets are shallow; our result is close to optimal. For Bennett's depth, the magnitude of compression improvement has to be achieved almost everywhere on the set. Bennett observed that relaxing to infinitely often is meaningless because every recursive set is infinitely often deep. We propose an alternative infinitely often depth notion that doesn't suffer this limitation (called i.o. depth).We show that every hyperimmune degree contains a i.o. deep set of magnitude εn, and construct a π01- class where every member is an i.o. deep set of magnitude εn. We prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep of constant magnitude, and that every nonrecursive many-one degree contains such a set

    Increased Memory Conversion of Naïve CD8 T Cells Activated during Late Phases of Acute Virus Infection Due to Decreased Cumulative Antigen Exposure

    Get PDF
    Background: Memory CD8 T cells form an essential part of protective immunity against viral infections. Antigenic load, costimulation, CD4-help, cytokines and chemokines fluctuate during the course of an antiviral immune response thus affecting CD8 T cell activation and memory conversion. Methodology/Principal Findings: In the present study, naïve TCR transgenic LCMV-specific P14 CD8 T cells engaged at a late stage during the acute antiviral LCMV response showed reduced expansion kinetics but greater memory conversion in the spleen. Such late activated cells displayed a memory precursor effector phenotype already at the peak of the systemic antiviral response, suggesting that the environment determined their fate during antigen encounter. In the spleen, the majority of late transferred cells exhibited a central memory phenotype compared to the effector memory displayed by the early transferred cells. Increasing the inflammatory response by exogenous administration of IFNc, PolyI:C or CpG did not affect memory conversion in the late transferred group, suggesting that the diverging antigen load early versus later during acute infection had determined their fate. In agreement, reduction in the LCMV antigenic load after ribavirin treatment enhanced the contribution of early transferred cells to the long lasting memory pool. Conclusions/Significance: Our results show that naïve CD8 cells, exposed to reduced duration or concentration of antigen during viral infection convert into memory more efficiently, an observation that could have significant implications fo

    Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results

    Get PDF
    Among the most readily available chemical warfare agents, sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. SM causes debilitating effects that can leave an exposed individual incapacitated for days to months; therefore delayed SM toxicity is of much greater importance than its ability to cause lethality. Although not fully understood, acute toxicity of SM is related to reactive oxygen and nitrogen species, oxidative stress, DNA damage, poly(ADP-ribose) polymerase (PARP) activation and energy depletion within the affected cell. Therefore several antioxidants and PARP inhibitors show beneficial effects against acute SM toxicity. The delayed toxicity of SM however, currently has no clear mechanistic explanation. One third of the 100,000 Iranian casualties are still suffering from the detrimental effects of SM in spite of the extensive treatment. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. Preliminary evidence reveals that mechlorethamine (a nitrogen mustard derivative) exposure may not only cause oxidative stress, DNA damage, but epigenetic perturbations as well. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to mutations, epimutations contribute to a variety of human diseases. Under light of preliminary results, the current hypothesis will focus on epigenetic regulations to clarify mustard toxicity and the use of drugs to correct possible epigenetic defects

    Macrophages in Alzheimer’s disease: the blood-borne identity

    Get PDF
    Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder clinically characterized by cognitive decline involving loss of memory, reasoning and linguistic ability. The amyloid cascade hypothesis holds that mismetabolism and aggregation of neurotoxic amyloid-β (Aβ) peptides, which are deposited as amyloid plaques, are the central etiological events in AD. Recent evidence from AD mouse models suggests that blood-borne mononuclear phagocytes are capable of infiltrating the brain and restricting β-amyloid plaques, thereby limiting disease progression. These observations raise at least three key questions: (1) what is the cell of origin for macrophages in the AD brain, (2) do blood-borne macrophages impact the pathophysiology of AD and (3) could these enigmatic cells be therapeutically targeted to curb cerebral amyloidosis and thereby slow disease progression? This review begins with a historical perspective of peripheral mononuclear phagocytes in AD, and moves on to critically consider the controversy surrounding their identity as distinct from brain-resident microglia and their potential impact on AD pathology

    Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity

    Get PDF
    Oxidative stress plays a key role in the pathogenesis of cancer and many metabolic diseases; therefore, an effective antioxidant therapy would be of great importance in these circumstances. Nevertheless, convincing randomized clinical trials revealed that antioxidant supplementations were not associated with significant reduction in incidence of cancer, chronic diseases and all-cause mortality. As oxidation of essential molecules continues, it turns to nitro-oxidative stress because of the involvement of nitric oxide in pathogenesis processes. Peroxynitrite damages via several distinctive mechanisms; first, it has direct toxic effects on all biomolecules and causes lipid peroxidation, protein oxidation and DNA damage. The second mechanism involves the induction of several transcription factors leading to cytokine-induced chronic inflammation. Finally, it causes epigenetic perturbations that exaggerate nuclear factor kappa-B mediated inflammatory gene expression. Lessons-learned from the treatment of several chronic disorders including pulmonary diseases suggest that, chronic inflammation and glucocorticoid resistance are regulated by prolonged peroxynitrite production

    Baire Category and Nowhere Differentiability for Feasible Real Functions ⋆

    No full text
    Abstract. A notion of resource-bounded Baire category is developed for the class PC[0,1] of all polynomial-time computable real-valued functions on the unit interval. The meager subsets of PC[0,1] are characterized in terms of resource-bounded Banach-Mazur games. This characterization is used to prove that, in the sense of Baire category, almost every function in PC[0,1] is nowhere differentiable. This is a complexity-theoretic extension of the analogous classical result that Banach proved for the class C[0, 1] in 1931.

    Visual Resources, Educational Technologies, & Teaching: A Collaborative Faculty Support Model

    No full text
    Article describing a project-based model for supporting faculty development projects in the humanitie

    Computing multivariable Taylor series to arbitrary order

    No full text
    corecore