72 research outputs found

    A EUFOREA comment on a lost comorbidity of asthma

    Get PDF
    Abstract “Epidemiology of comorbidities and their association with asthma control” (Tomisa, G., Horváth, A., Sánta, B. et al. Epidemiology of comorbidities and their association with asthma control. Allergy Asthma Clin Immunol 17, 95 (2021). https://doi.org/10.1186/s13223-021-00598-3 ) is an interesting paper reflecting data collection from more than 12,000 asthmatic patients in Hungary regarding their condition and associated comorbidities. We found it valuable that the paper provides an overview of asthma comorbidities not usually considered in similar reports. Nevertheless, we believe that chronic rhinosinusitis (CRS) with or without nasal polyps (CRSwNP or CRSsNP) should have been listed due to its high incidence and prevalence, its association with asthma which is also endorsed in both GINA and EPOS, as well as in several peer-reviewed scientific papers, and to reflect the role of this comorbidity in poor control and a most severe presentation of asthma for the patient. Consequently, several targeted therapies (especially monoclonal antibodies) used for several years in severe forms of asthma are now indicated also for the effective treatment of nasal polyps

    Effects of non‐steroidal anti‐inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses. EAACI task force on eicosanoids consensus report in times of COVID‐19

    Get PDF
    Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research

    Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology

    Get PDF
    The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune‐driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence‐related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging

    EUFOREUM Berlin 2023: Optimizing care for type 2 inflammatory diseases from clinic to AI: A pediatric focus.

    Get PDF
    The European Forum for Research and Education in Allergy and Airways diseases (EUFOREA) organized its bi-annual forum EUFOREUM in Berlin in November 2023. The aim of EUFOREUM 2023 was to highlight pediatric action plans for prevention and optimizing care for type 2 inflammatory conditions starting in childhood, with a focus on early-stage diagnosis, ensuring neither under- nor overdiagnosis, optimal care, and suggestions for improvement of care. EUFOREA is an international not-for-profit organization forming an alliance of all stakeholders dedicated to reducing the prevalence and burden of chronic respiratory diseases through the implementation of optimal patient care via educational, research, and advocacy activities. The inclusive and multidisciplinary approach of EUFOREA was reflected in the keynote lectures and faculty of the virtual EUFOREUM 2023 (www.euforea.eu/euforeum) coming from the pediatric, allergology, pulmonology, ENT, dermatology, primary health care fields and patients around the central theme of type 2 inflammation. As most type 2 inflammatory conditions may start in childhood or adolescence, and most children have type 2 inflammation when suffering from a respiratory or skin disease, the moment has come to raise the bar of ambitions of care, including prevention, remission and disease modification at an early stage. The current report provides a comprehensive overview of key statements by the faculty of the EUFOREUM 2023 and the ambitions of EUFOREA allowing all stakeholders in the respiratory field to be updated and ready to join forces in Europe and beyond

    Targeted Gene Panel Sequencing for Early-onset Inflammatory Bowel Disease and Chronic Diarrhea

    Get PDF
    Background: In contrast to adult-onset inflammatory bowel disease (IBD), where many genetic loci have been shown to be involved in complex disease etiology, early-onset IBD (eoIBD) and associated syndromes can sometimes present as monogenic conditions. As a result, the clinical phenotype and ideal disease management in these patients often differ from those in adult-onset IBD. However, due to high costs and the complexity of data analysis, high-throughput screening for genetic causes has not yet become a standard part of the diagnostic work-up of eoIBD patients. Methods: We selected 28 genes of interest associated with monogenic IBD and performed targeted panel sequencing in 71 patients diagnosed with eoIBD or early-onset chronic diarrhea to detect causative variants. We compared these results to whole-exome sequencing (WES) data available for 25 of these patients. Results: Target coverage was significantly higher in the targeted gene panel approach compared with WES, whereas the cost of the panel was considerably lower (approximately 25% of WES). Disease-causing variants affecting protein function were identified in 5 patients (7%), located in genes of the IL10 signaling pathway (3), WAS (1), and DKC1 (1). The functional effects of 8 candidate variants in 5 additional patients (7%) are under further investigation. WES did not identify additional causative mutations in 25 patients. Conclusions: Targeted gene panel sequencing is a fast and effective screening method for monogenic causes of eoIBD that should be routinely established in national referral centers.info:eu-repo/semantics/publishedVersio

    Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology

    Get PDF
    The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging

    Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology

    Get PDF
    The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging

    Unravelling the clinical heterogeneity of undefined recurrent fever over time in the European registries on Autoinflammation

    Get PDF
    Background: Systemic autoinflammatory disorders (SAIDs) represent a growing spectrum of diseases characterized by dysregulation of the innate immune system. The most common pediatric autoinflammatory fever syndrome, Periodic Fever, Aphthous Stomatitis, Pharyngitis, Adenitis (PFAPA), has well defined clinical diagnostic criteria, but there is a subset of patients who do not meet these criteria and are classified as undefined autoinflammatory diseases (uAID). This project, endorsed by PRES, supported by the EMERGE fellowship program, aimed to analyze the evolution of symptoms in recurrent fevers without molecular diagnosis in the context of undifferentiated AIDs, focusing on PFAPA and syndrome of undifferentiated recurrent fever (SURF), using data from European AID registries. Methods: Data of patients with PFAPA, SURF and uSAID were collected from 3 registries including detailed epidemiological, demographic and clinical data, results of the genetic testing and additional laboratory investigations with retrospective application of the modified Marshall and PRINTO/Eurofever classification criteria on the cohort of PFAPA patients and preliminary SURF criteria on uSAID/SURF patients. Results: Clinical presentation of PFAPA is variable and some patients did not fit the conventional PFAPA criteria and exhibit different symptoms. Some patients did not meet the criteria for either PFAPA or SURF, highlighting the heterogeneity within these groups. The study also explored potential overlaps between PFAPA and SURF/uAID, revealing that some patients exhibited symptoms characteristic of both conditions, emphasizing the need for more precise classification criteria. Conclusions: Patients with recurrent fevers without molecular diagnoses represent a clinically heterogeneous group. Improved classification criteria are needed for both PFAPA and SURF/uAID to accurately identify and manage these patients, ultimately improving clinical outcomes
    • 

    corecore