2,791 research outputs found

    An examination of gender differences in attitudes towards partner infidelity

    Get PDF
    The present study is designed to take a new approach to studying gender differences in reactions to partner infidelity by measuring attitudes toward partner infidelity. No previous studies have directly examined attitudes toward partner sexual versus emotional infidelity, nor have studies assessed the strength of these attitudes. Thus, this study was designed as an initial investigation of overall evaluative differences between men and women. It was found that women held significantly more negative attitudes towards emotional infidelity than did men, with no gender differences in attitude held towards sexual infidelity. For sexual infidelity, more positive attitudes toward partner sexual infidelity were associated with lower reported distress for both men and women, with the relationship being significantly more pronounced for men. For emotional infidelity, attitude strength moderated the relationship between attitude towards emotional infidelity and distress about emotional infidelity. There was a significant relationship between attitudes toward partner emotional infidelity and distress when attitude strength was high but not when attitude strength was low.Department of Psychological ScienceThesis (M.A.

    Local Retrodiction Models for Photon-Noise-Limited Images

    Get PDF
    Imaging technologies working at very low light levels acquire data by attempting to count the number of photons impinging on each pixel. Especially in cases with, on average, less than one photocount per pixel the resulting images are heavily corrupted by Poissonian noise and a host of successful algorithms trying to reconstruct the original image from this noisy data have been developed. Here we review a recently proposed scheme that complements these algorithms by calculating the full probability distribution for the local intensity distribution behind the noisy photocount measurements. Such a probabilistic treatment opens the way to hypothesis testing and confidence levels for conclusions drawn from image analysis

    Retrodiction as a tool for micromaser field measurements

    Get PDF
    We use retrodictive quantum theory to describe cavity field measurements by successive atomic detections in the micromaser. We calculate the state of the micromaser cavity field prior to detection of sequences of atoms in either the excited or ground state, for atoms that are initially prepared in the excited state. This provides the POM elements, which describe such sequences of measurements.Comment: 20 pages, 4(8) figure

    Fidelity for imperfect postselection

    Full text link
    We describe a simple measure of fidelity for mixed state postselecting devices. The measure is most appropriate for postselection where the task performed by the output is only effected by a specific state.Comment: 8 Pages, 8 Figure

    Retrodictive states and two-photon quantum imaging

    Get PDF
    We use retrodictive quantum theory to analyse two-photon quantum imaging systems. The formalism is particularly suitable for calculating conditional probability distributions.Comment: 5 pages, 3 figure

    Quantum retrodiction in open systems

    Get PDF
    Quantum retrodiction involves finding the probabilities for various preparation events given a measurement event. This theory has been studied for some time but mainly as an interesting concept associated with time asymmetry in quantum mechanics. Recent interest in quantum communications and cryptography, however, has provided retrodiction with a potential practical application. For this purpose quantum retrodiction in open systems should be more relevant than in closed systems isolated from the environment. In this paper we study retrodiction in open systems and develop a general master equation for the backward time evolution of the measured state, which can be used for calculating preparation probabilities. We solve the master equation, by way of example, for the driven two-level atom coupled to the electromagnetic field.Comment: 12 pages, no figure

    Grassmann phase space theory for fermions

    Get PDF
    A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases

    The color dependent morphology of the post-AGB star HD161796

    Get PDF
    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shell, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects. Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims. We aim at detecting signatures of an aspherical outflow, as well as to derive the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme polarimeter), a visitor instrument at the William Herschel Telescope, to accurately image the dust shell surrounding HD 161796 in various wavelength filters. Imaging polarimetry allows us to separate the faint, polarized, light from circumstellar material from the bright, unpolarized, light from the central star. Results. The shell around HD 161796 is highly aspherical. A clear signature of an equatorial density enhancement can be seen. This structure is optically thick at short wavelengths and changes its appearance to optically thin at longer wavelengths. In the classification of the two different appearances of planetary nebulae from HST images it changes from being classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This strengthens the interpretation that these two appearances are manifestations of the same physical structure. Furthermore, we find that the central star is hotter than often assumed and the relatively high observed reddening is due to circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&

    The Extreme Polarimeter: Design, Performance, First Results & Upgrades

    Full text link
    Well over 700 exoplanets have been detected to date. Only a handful of these have been observed directly. Direct observation is extremely challenging due to the small separation and very large contrast involved. Imaging polarimetry offers a way to decrease the contrast between the unpolarized starlight and the light that has become linearly polarized after scattering by circumstellar material. This material can be the dust and debris found in circumstellar disks, but also the atmosphere or surface of an exoplanet. We present the design, calibration approach, polarimetric performance and sample observation results of the Extreme Polarimeter, an imaging polarimeter for the study of circumstellar environments in scattered light at visible wavelengths. The polarimeter uses the beam-exchange technique, in which the two orthogonal polarization states are imaged simultaneously and a polarization modulator swaps the polarization states of the two beams before the next image is taken. The instrument currently operates without the aid of Adaptive Optics. To reduce the effects of atmospheric seeing on the polarimetry, the images are taken at a frame rate of 35 fps, and large numbers of frames are combined to obtain the polarization images. Four successful observing runs have been performed using this instrument at the 4.2 m William Herschel Telescope on La Palma, targeting young stars with protoplanetary disks as well as evolved stars surrounded by dusty envelopes. In terms of fractional polarization, the instrument sensitivity is better than 10^-4. The contrast achieved between the central star and the circumstellar source is of the order 10^-6. We show that our calibration approach yields absolute polarization errors below 1%
    corecore