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ABSTRACT

Imaging technologies working at very low light levels acquire data by attempting to count the number of photons
impinging on each pixel. Especially in cases with, on average, less than one photocount per pixel the resulting
images are heavily corrupted by Poissonian noise and a host of successful algorithms trying to reconstruct the
original image from this noisy data have been developed. Here we review a recently proposed scheme that
complements these algorithms by calculating the full probability distribution for the local intensity distribution
behind the noisy photocount measurements. Such a probabilistic treatment opens the way to hypothesis testing
and confidence levels for conclusions drawn from image analysis.

Keywords: Poisson noise, image analysis, image optimisation, Bayesian inference, photon-limited imaging,
image retrodiction

1. INTRODUCTION

Several modern imaging technologies work at the lowest possible light level in that they image an object by
detecting individual photocounts at each pixel.1–4 The resulting images are corrupted by Poisson noise such that
even after processing with advanced denoising algorithms one might not obtain a clear distinction between real
features of an object and a random cluster of noise, especially for an average of less than one photocount per
pixel. To assess the reliability of conclusions drawn from image analysis, one therefore needs to define confidence
levels, which in turn require a probabilistic treatment of the noisy image data.

In a recent work5 we presented a Bayesian model inspired by quantum state retrodiction6–9 to produce a
probability distribution for the original light intensity, given the measured number of photocounts at each pixel.
Such a probabilistic approach then gives not only the most likely value for the intensity at each pixel, but allows
one to derive uncertainty levels or test certain hypotheses on the image. This retrodictive approach therefore
opens the way to a more cautious and quantitative analysis of measured images, especially in situations with
high noise levels.

Here we will start by reviewing the ideas behind image retrodiction in more detail. We start with the simple
approach where only data from a single pixel is used, then go on to derive a more involved analysis where also the
information from neighbouring pixels is taken into account in section 3. In section 4 we discuss the performance
of these models in a more quantitative way by comparing the results of image retrodiction with the known
original image shown in figure 1.

2. SINGLE-PIXEL RETRODICTION

Let us assume that an object is illuminated by an attenuated single-mode light source such as a weak laser
beam; alternatively, the object itself could be weakly fluorescent. Then the number of photons n coming from
the object towards the detector follows a Poissonian distribution, p(n|λ) = Pois(n;λ) with

Pois(n;λ) :=
e−λλn

n!
. (1)
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Figure 1. Images used for retrodiction in this work. Right: original image of an eraser used for the examples in figures 2, 3
and 5 (N = 520× 289 pixels). Left: detail image (N = 85 × 85 pixels) used for quantitative measurements in section 4.
The areas in the boxes are selected regions of relatively high (A and B) and low intensity (C) used for the example in
section 4.2. Note that the intensity map is inverted here so dark regions correspond to high intensities.

The value λ is proportional to the intensity of the light field emitted by the object towards the detector within
the detection time. If we have an array of photodetectors then each of them will image a different region of the
object, corresponding to a different value of λ. The set λ̂1, . . . , λ̂N thus constitutes the true image for N pixels.

However, each detector only has a finite detection efficiency η ∈ (0, 1] such that the number of photocounts
actually is given by

p(m|λ) = Pois(m; ηλ) . (2)

An example for an artificial measurement of the original image from figure 1 using this Poisson process is given
in figure 2. Note that any realistic detector will also suffer from external noise which results in a certain level
of dark counts.9 These are not included in this work, but are discussed in the additional material of a previous
work.5
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Figure 2. “Measured” image obtained from the original in figure 1 using artificial Poisson noise corresponding to a
detection efficiency η = 0.1, see also equation (2). Note that most of the pixels have m = 0 such that the global average
number of photocounts is m ' 0.5.

As we know the measurement value m ≥ 0 we seek the probability distribution for the possible intensities λ,
given a measurement m. This can be obtained using Bayes’ theorem

p(λ|m) =
p(m|λ)p(λ)

p(m)
, (3)

with p(m|λ) as given above and a normalisation factor p(m) =
∫∞
0
p(m|λ)p(λ)dλ. Choice of a correct prior

probability p(λ) is a crucial step in Bayesian probability theory.10

As discussed in an earlier work5 useful prior information can be obtained from a first estimate of the av-
erage detected photon number m. This can be either found by a global average across the whole image,
m =

∑N
i=1mi/N , where mi is the number of photocounts measured at the ith of N pixels; or one derives

a local prior using, for instance, Gaussian weights to find an estimate mi for the average photon number in the
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region of the ith pixel, see also equation (10). If we have such an estimate of the average m, the least biased
discrete probability distribution is p(m|m) = Geom(m;m),11 with the geometric distribution∗

Geom(m;x) =
xm

(x+ 1)m+1
. (4)

By using p(m|m) =
∫∞
0
p(m|λ)p(λ|m)dλ we then find that this requires an exponential prior for the intensities

p(λ|m) = η
me
−λη/m such that

p(λ|m,m) = λm
(
η(1 + 1/m)

)m+1

m!
e−λη(1+1/m) . (5)

The retrodicted probability distribution for the intensity λ given a measurement m and some estimate m thus
follows a gamma distribution, p(λ|m,m) = Gam(λ;m+ 1, 1/η) with η = η(1 + 1/m) and

Gam(x;α, β) :=
xα−1

βα
e−x/β

Γ(α)
. (6)

Note that setting m → 0 gives the result for a flat prior p(λ) which is constant up to some arbitrarily large
value of λ. Such a flat prior thus gives reasonable results if we expect a high number of photocounts, but is a
poor estimate for the situations discussed here where we usually have m < 1.

As p(λ|m,m) follows a gamma distribution we immediately find the expectation value

E(λ|m,m) =
m+ 1

η(1 + 1/m)
, (7)

while the cumulative distribution function, which contains all the information about the intensity distribution

given the counts at each pixel, P (λ|m,m) :=
∫ λ
0
p(λ′|m,m)dλ′ reads

P (λ|m,m) = γ(m+ 1, λη(1 + 1/m)) , (8)

where γ(n, x) denotes the normalised incomplete gamma function

γ(n, x) :=
1

Γ(n)

∫ x

0

e−t tn−1dt . (9)
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Figure 3. Expectation values of single pixel retrodiction as given by equation (7) using measurements from figure 2, i. e.
η = 0.1. The left image used a global value for m ' 0.5 while the right image used a local version for mi as given by
equation (10) with σ = 1.3. These models are labelled as I and II in table 1. Although the intensity map had to be
rescaled to account for some outliers, the right hand side image appears to be closer to the original from figure 1.

∗Note that limx→0 Geom(m;x) = 1 for m = 0 and limx→0 Geom(m;x) = 0 else.
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Two examples for the expectation values E(λ|m,m) obtained from an artificial “measurement” given in

figure 2 are displayed in figure 3. In the first panel we used a global estimate m =
∑N
i=1mi/N and in the second

a local version where the prior is slightly different at each pixel,

mi =

∑N
j=1mj exp[−d2ij/(2σ2)]∑N
j=1 exp[−d2ij/(2σ2)]

(10)

with dij being the Euclidean distance between the ith and the jth pixel. As discussed in more detail in section 3.1
such a local prior mi is probably the most obvious way to improve the quality of the retrodiction.

3. MIXED RETRODICTION

Single pixel retrodiction as introduced above is valid for any type of photodetection setup and thus does not
make use of the additional information that we are trying to retrodict an image. The essential feature of an
interesting image is that the individual pixels are not uncorrelated and in most cases one can expect that pixels
within a certain neighbourhood have the same or similar true values λ̂. This is the key to most image denoising
algorithms.

3.1 Retrodiction from a constant source

First, let us assume we know that all pixels within a certain neighbourhood N = {m1,m2, . . . ,mN} should

ideally show the same true intensity value, i. e. λ̂1 = . . . = λ̂N = λ̂. The inherently random nature of the
measurement will still result in varying integer photocounts across this neighbourhood, but we know that the
measurement at each pixel is just one out of many individual and independent experiments with the same mean
value λ̂.

If we start with m1 ∈ N and some guess for m we will find p(λ|m1,m) = Gam(λ;m1 + 1, η) as described in
equation (5). But as we know that measurements m2, . . . ,mN come from a source with the same intensity we
can use a Bayesian update, p(λ|m1,m2,m) ∼ p(m2|λ)p(λ|m1,m), such that

p(λ|m1,m2,m) = Gam
(
λ;m1 +m2 + 1, 1/[η(2 + 1/m)]

)
, (11)

where we used p(m2|λ) = Pois(m2, ηλ) and

Pois(k;αx) Gam(x; l + 1, 1/β) =

(
k + l

l

)
αkβl+1

(α+ β)k+l+1
Gam(x; k + l + 1, 1/(α+ β)) . (12)

Knowing that all N measurements in this neighbourhood are independent we find

p(λ|N ,m) ∼
N∏
j=2

p(mj |λ)p(λ|m1,m) , (13)

p(λ|N ,m) = Gam
(
λ|m1 +m2 + · · ·+mN + 1, 1/[η(N + 1/m)]

)
, (14)

where p(λ|N ,m) ≡ p(λ|m1,m2, . . . ,mN ,m). As this is again a Gamma distribution we know its expectation
value,

E(λ|N ,mN ,m) =
1

η(N + 1/m)

( N∑
j=1

mj + 1
)
. (15)

Obviously we would expect that having N independent experiments instead of just one will give a much
better estimate on the true intensity λ̂. To quantify just how much better N experiments are, we calculate the
expected difference between the true λ̂ and E(λ|N ,m), i. e.

E
(

E(λ|N ,m)− λ̂
)

=

∞∑
m1=0

· · ·
∞∑

mN=0

p
(
m1,m2, . . . ,mN |λ̂

) (
E(λ|N ,m)− λ̂

)
, (16)
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where p
(
m1,m2, . . . ,mN |λ̂

)
=
∏N
i=1 Pois(mi|ηλ̂). For the example with N = 2 we find

∞∑
m1=0

∞∑
m2=0

[
Pois(m1|ηλ̂) Pois(m2|ηλ̂)

(m1 +m2 + 1

η(2 + 1/m)
− λ̂
)]

=

=
1

η(2 + 1/m)

[ ∞∑
m1=0

m1 Pois(m1|ηλ̂)

∞∑
m2=0

Pois(m2|ηλ̂) +

∞∑
m2=0

Pois(m1|ηλ̂)

∞∑
m2=0

m2 Pois(m2|ηλ̂)

+
(

1− ηλ̂(2 + 1/m)
) ∞∑
m1=0

Pois(m1|ηλ̂)

∞∑
m2=0

Pois(m2|ηλ̂)

]
, (17)

such that E
(

E(λ|m1,m2,m)−λ̂
)

=
(
1−ηλ̂/m

)
/
(
η(2+1/m)

)
. Here where we only used that

∑∞
m=0 Pois(m|x) = 1

and
∑∞
m=0mPois(m|x) = x. The procedure for N elements is exactly the same and we find

E
(

E(λ|N ,m)− λ̂
)

=
1− ηλ̂/m
η(N + 1/m)

. (18)

This shows that the expected error of a retrodiction using N pixels (from the same source) is reduced by a

factor ∼ 1/N . It also shows the importance of having m ∼ ηλ̂, which is a good reason to work with a local prior
mi such as, for example, the one given in equation (10).

By using the fact that maxλ p(λ|N ,m) =
∑N
j=1mj/(η(N+1/m)) is the maximum of the Gamma distribution

we find that the expected difference between the maximum likelihood and the true value is

E
(

max
λ

p(λ|N ,m)− λ̂
)

= − ηλ̂/m

η(N + 1/m)
. (19)

One might therefore be tempted to set m→∞ as this will obviously ensure that the maximum of the probability
distribution is close to the true value λ̂, even for a single measurement λ̂. Calculation of the variance however
shows that

Var
(

max
λ

p(λ|N ,m)− λ̂
)

= Var
(

E(λ|N ,m)− λ̂
)

=
Nλ̂

η(N + 1/m)2
, (20)

and we see that especially m� 1 helps to reduce the variance. A similar result for single-pixel retrodiction has
been shown in an earlier work.5

For this derivation we used the assumption that we know that all measurements mi ∈ N come from a source
with the same true intensity λ̂. This might be the case in some over-sampled setups where, for instance, the
point spread function of an imaged object covers several pixels. But in a more general situation this assumption
of a constant true intensity has to be weakened.

Figure 4 shows the convergence of mixed retrodiction towards a true value λ̂ for a constant image with
increasing number of measurements N . One sees that starting from a prior with m ≈ ηλ̂ helps to reduce the
difference between E(λ|N ,m) and λ̂, especially if one doesn’t know that all measurements come from a source
of equal intensity. One also sees that the variation remains high.

3.2 Mixed retrodiction with weights

In the example above we knew that the measurements at two different pixels, mi and mj , came from a source of
equal intensity. Without this knowledge we might still assume that this is the case, for instance because mi and
mj are next to each other and we expect that our image contains several constant regions. This assumption is

quantified by introducing a weight Wij ∈ [0, 1] which reflects the assumed probability for λ̂i = λ̂j .
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Figure 4. Difference between a true image value λ̂ and the expectation values obtained from mixed retrodiction using
different models and an increasing number of measurements N = {m1, . . . ,mN}. The left column shows the expected
difference E

(
E(λ|N ,m)−λ̂

)
for different values of m, the right column shows the corresponding variances. The theoretical

curves from equations (18) and (20) are given in black.
The blue dots show the results for mixed retrodiction when we know that all data points come from the same source
as discussed in section 3.1 and agree well with the theoretical curves. The red squares [green diamonds] are for mixed
retrodiction using Gaussian [polynomial] weights as described in table 1 (models III and IV, but with increasing width σ).
Each data point is the average of E(E(λ|N ,m)− λ̂) and Var(E(λ|N ,m)− λ̂) after 100 simulations with different sets of
measurements m1, . . . ,mN . Here we chose λ̂ = 7 and η = 0.1.

Generally, if we think a measurement m could have come from a source of intensity λ or a different source of
intensity λ′ we can write p(m|λ, λ′,W ) = Pois

(
m; ηWλ+ η(1−W )λ′

)
such that

p(m|λ,W,m) =

∫ ∞
0

dλ′p(m|λ, λ′,W )p(λ′|m)

=

m∑
k=0

Geom
(
m− k; (1−W )m

)
Pois

(
k; ηWλ

)
,

(21)

where we used an exponential prior p(λ′|m) = η
me
−ηλ′/m and the geometric distribution as defined in equa-

tion (4). Hence an update on the probability of λ using a measurement mj and a weight Wij reads (up to some
normalisation factor)

p(λ|mi,mj ,Wij ,m) ∼ p(mj |λ,Wij ,m)p(λ|mi,m)

∼
mj∑
k=0

Gam
(
λ;mi + k + 1, 1/[η(1 +Wij + 1/m)]

)
×(

mi + k

k

)
(Wij)

k

(1 +Wij + 1/m)k
Geom

(
mj − k; (1−Wij)m

)
.

(22)

Here we used p(λ|mi,m) from single-pixel retrodiction and relation (12).

We see that this updated probability distribution p(λ|mi,mj ,Wij ,m) is a sum of mj +1 gamma distributions
with some coefficients and a normalisation, which is simply the sum of these coefficients. To use more data points
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we repeat this procedure using equations (21) and (12) to find

p(λ|mi,mj ,mj′ ,Wij ,Wij′ ,m) ∼ p(mj′ |λ,Wij′ ,m)p(λ|mi,mj ,Wij ,m)

∼
mj∑
k=0

mj′∑
k′=0

Gam
(
λ;mi + k + k′ + 1, 1/[η(1 +Wij +Wij′ + 1/m)]

) (Wij)
k(Wij′)

k′

(1 +Wij +Wij′ + 1/m)k+k′
×(

mi + k + k′

mi, k, k′

)
Geom(mj − k; (1−Wij)m) Geom(mj′ − k′; (1−Wij′)m),

(23)

where
(
mi+k+k

′

mi,k,k′

)
:= (mi + k + k′)!/(mi!k!k′!) is a multinomial coefficient. Comparing this to what we found for

p(λ|mi,mj ,Wij ,m), we identify a pattern which allows one to calculate the mixed retrodiction using all other
pixels

p(λ|mi, {mj ,Wij}j 6=i,m) ∼
∏
j 6=i

p(mj |λ,Wij ,m)p(λ|mi,m). (24)

As mentioned above, p(λ|mi, {mj ,Wij}j 6=i,m) is a sum of gamma distributions with coefficients given by the
measurement values and the set of weights Wij . Once these coefficients are computed, it is straightforward to cal-
culate expectation values E(λ|mi, {mj ,Wij}j 6=i,m) or cumulative distribution functions P (λ|mi, {mj ,Wij}j 6=i,m)
using equations (7) or (8), respectively. Thus, the mixed retrodiction framework allows one to calculate proba-
bility distributions for the intensity at a pixel with measurement mi, using other measurements mj , j 6= i, even

if one cannot be sure that the true intensities are the same λ̂, as we assumed in section 3.1.

Of course, the quality of such a mixed retrodiction crucially depends on the choice of weights Wij . But
finding a suitable model for these weights is the same type of problem as discussed when designing image
denoising algorithms using local or non-local averaging methods of varying complexity.12
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Figure 5. The expectation values from mixed retrodiction using Gaussian (left, σ = 1.3) and step-function (right, σ = 3.5)
weights Wij as given in equations (25) and (27) or table 1 (models III and V). The measurements are shown in figure 2.

To discuss some of the features of this mixed retrodiction we continue with three simple models where the
weights are proportional to the distance dij between the ith and the jth pixel and thus resemble local averaging
algorithms. The first is a Gaussian model where

Wij = e−d
2
ij/(2σ

2) , (25)

while the second follows a polynomial

Wij =

{
1− (dij/σ)2 for dij ≤ σ ,
0 else .

(26)

The Gaussian mixed retrodiction is by design very similar to usual local averaging.12 Even with a cutoff where
weights with Wij < 1/100 are ignored, the number of neighbouring measurements included in the calculation
grows rapidly, although most weights are rather small. The polynomial weights by comparison include fewer
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neighbours for the same value of σ, but have a higher fraction of weights close to unity. As seen from table 1
or figure 5, we use σ = 1.3 [σ = 4.5] for the examples with Gaussian [polynomial] weights. This typically
corresponds to N = 45 [N = 48] measurements included in retrodicting a single pixel.

The third is a much simpler, but surprisingly effective model and uses a step function for the weights,

Wij =

{
1 for dij ≤ σ ,
0 else .

(27)

This model is thus an implementation of mixed retrodiction from a locally constant source as described in
section 3.1. As seen in figure 5 (right panel) and described in table 1 we here use an example with σ = 3.5 which
corresponds to a typical number of N = 37 measurements used to retrodict a single pixel.

4. PERFORMANCE OF DIFFERENT IMAGE RETRODICTION MODLES

In figure 4 we saw that the expectation values obtained from mixed retrodiction converge towards the true
intensity value λ̂ in regions of constant intensity. This justifies some optimism on the validity of this approach
also for more interesting, non-constant images. However we also saw the significant variation in the quality of
this retrodiction.

This unsettling uncertainty comes from the fact that the measurement values discussed here usually range in
the low-digit numbers, with the large majority being either 0 or 1. For instance, having η = 0.1 we can expect
that λ̂ = 4 or λ̂ = 6 will result in an almost identical set of Poissonian measurements. This is why fluctuations
in the distribution of the number of photocounts used to retrodict the intensity of a specific pixel have such an
impact on the quality of the retrodiction.

In this section we therefore present some results of an ongoing project to quantify the reliability of different
retrodiction models. For this we take the subset of the image shown on the left in figure 1 and generate several
artificial set of “measured” images. Each of these “measurements” is then processed with different retrodiction
methods and compared to the original. In the following sections we show the results of some benchmark tests
on the correctness and usefulness of the retrodicted probability distributions.

Table 1. The models tested using different artificial “measurements” of the image given in fig 1 and their labels as used
in figures 3 to 8. Here dij denotes the Euclidean distance between the ith and the jth pixel.

Model Label

single-pixel retrodiction with global m ' 0.5 I

single-pixel retrodiction with local mi as given in equ. (10) with σ = 1.3. II

mixed retrodiction with Gaussian weights,
Wij = exp(−d2ij/(2σ2)) with σ = 1.3 and local mi ∼

∑N
j=1Wijmj

III

mixed retrodiction with polynomial weights,

Wij = 1−
(
dij/σ

)2
(for dij ≤ σ) with σ = 4.5 and local mi ∼

∑N
j=1Wijmj

IV

mixed retrodiction with weights from a step function,
Wij = 1 for dij ≤ σ with σ = 3.5 and local mi ∼

∑N
j=1Wijmj

V

4.1 Global performance compared to a true image

In order to learn about the correctness of a given retrodiction model we use two quantities similar to the common
signal-to-noise ratio (SNR) and normalised root-mean-square error (nRMSE), but adapted to the situation where
neither the original nor the estimated picture have a defined maximum value, i. e.
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SNR :=

∑N
i=1 λ̂i∑N

i=1

√(
λ̂i − E(λ|mi, . . . )

)2 , (28a)

nRMSE :=

√∑N
i=1

(
λ̂i − E(λ|mi, . . . )

)2
/N∑N

i=1 λ̂i/N
. (28b)

Here λ̂i is the true image value at the ith pixel while E(λ|mi, . . . ) is the expectation value of the corresponding
probability distribution. The notation E

(
λ|mi, . . . ) will be used to indicate that this expectation value can be

obtained using different retrodiction models.

As retrodiction gives not just a single number per pixel, but a full probability distribution we can also ask
for the average probability to find λ close to the true image value λ̂i, given the corresponding measurements, i. e.

Prob
(
λ ∈ [(1− x) λ̂, (1 + x) λ̂]

)
:=

1

N

N∑
i=1

(
P
(
(1 + x) λ̂i|mi, . . .

)
− P

(
(1− x) λ̂i|mi, . . .

))
, (29)

with the cumulative distribution function P (λ|mi, . . .
)

as obtained using equations (24) and (8). In section 4.2
we will discuss how to use the probabilistic information to distinguish brighter or darker features.

In figure 6 we see the values for nRMSE, SNR and Prob
(
λ ∈ [0.75 λ̂, 1.25 λ̂]

)
for different artificial measure-

ments of the sub-image shown in figure 1. The models for retrodiction used in figures 6 and 8 are given in table 1.
We find that the polynomial retrodiction model IV and, surprisingly, the locally constant model V are on average
far closer to the true image than the other models. The poor performance of the single-pixel retrodiction with
local prior mi (model II) is surprising and appears to be due to a comparatively high noise level. Note that the
Gaussian retrodiction (model III) uses the same local mi, but the retrodiction process adds further reliability to
the predictions.

Prob
(

λ ∈ [0.75λ̂, 1.25λ̂]
)

retrod. model
VIVIIIIII
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Figure 6. Results of benchmark tests of the adapted signal-to-noise ratio and normalised root-mean-square error as
defined in equation (28) and the average probability of being close to the true value given in equation (29) for the
retrodiction models as given in table 1. Each red dot corresponds to the results from one of 20 “measurements” of the
detail image given in figure 1, the black crosses are the corresponding averages. It is quite surprising that model II
(single-pixel retrodiction with local prior mi) is worse than model I with the global m, but both are clearly outperformed
by the mixed retrodiction models III to V.

4.2 Hypothesis testing using different retrodiction models

The distinguishing feature between image retrodiction and the evolved field of image denoising is that image
retrodiction provides the full probability distribution p(λ|mi, . . . ) for each pixel i = 1, . . . , N . In most of the
previous examples we only discussed the corresponding expectation values, although the probability of λ being
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close to the true value as given in equation (29) and tested in figure 6 was a first example making use of the
probability distributions.

In this section we discuss the performance of the retrodiction models given in table 1 in distinguishing bright
and dark areas. The framed areas of the detail image in figure 1 are three regions that are singled out because
they are relatively bright (region A and B) or dark (region C).

In order to establish whether the intensity at a pixel is larger [smaller] than the average, we define the back-
ground as the median of the retrodicted expectation value across the whole image, i. e. bg := mediani E(λ|mi, . . . ).
Figures 7 and 8 show the evidence ev(λ ≥ bg) [or ev(λ ≤ bg)] for the whole detail image or averaged across the
regions of interest, respectively. The evidence that the intensity at a point is larger than a certain value x is
given by10

ev
(
λ ≥ x|mi, . . .

)
= 10 log10

1− P
(
x|mi, . . .

)
P
(
x|mi, . . .

) , (30)

with the cumulative distribution function P as used in equation (29).

The evidence as defined here is a good measure to see how well the hypothesis “λ ≥ x” is supported by a
given probability distribution. Values of ev � 0 indicate that the statement “λ ≥ x” is strongly supported by
this model, while negative values for the evidence indicate that this assumption is wrong. If we find ev ≈ 0, then
this model cannot help us to decide whether the hypothesis “λ ≥ x” is true or false.
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Figure 7. From left to right: values of 10 log10[λ̂/medianλ̂] to show areas of relatively high or low intensity of the detail
image from figure 1. Evidence for high/low intensity (compared to background) for the models described in table 1. We
see that most models are relatively good in identifying low intensity regions, but only locally-constant mixed retrodiction
(model V) gives an overall pleasant result. See figure 8 for the averaged results of multiple different “measurements”.

Figures 7 and 8 show that mixed retrodiction models (and there especially the locally constant model V,
followed by the polynomial model IV) can reliably help to identify exceptionally bright or dark regions even
in noisy images. Here we also see a key difference between single-pixel and mixed retrodiction: Choice of a
good local prior mi might ensure that an image of the expectation values looks pleasantly like a “proper” image.
However, the retrodicted probability distributions for single-pixel retrodiction remain very broad such that a test
related to the probabilities will always give rather vague answers (that is, a low absolute value for the evidence).

By having a good prior and model for the weights Wij one can produce retrodiction models that are correct
when compared to a true image (see figure 6) and at the same time give more narrow probability distributions
such that proper hypothesis testing is possible.

5. CONCLUSIONS

Usual (Poissonian) image denoising1,2, 4, 13–15 is highly successful in replacing a noisy image with a smoothed,
more correct version. But especially if one tries to analyse data with on average less than one photocount per
pixel, having a new, nicer image without detailed information on the reliability of the reconstruction might not
be enough.

Designed for noisy images recorded at low light levels, image retrodiction5 is a framework that allows one to
calculate the Bayesian probability distributions for the intensity at each pixel. In this work we have performed
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Figure 8. Evidence that the regions A, B and C defined in figure 1 have on average a higher (lower for region C) intensity
than the background of the detail image, calculated for different retrodiction models as defined in table 1. The background
is defined as the median of the retrodicted expectation value across the whole image, bg := mediani E(λ|mi, . . . ), and
is thus independent from any knowledge about the true image. Each red dot corresponds to the results from one of 20
“measurements” of the detail image given in figure 1, the black crosses are the corresponding averages. The evidence as
defined in equation (30) is a logarithmic quantity which is here limited to a maximum value of ≈ 160 due to numerical
reasons.

several benchmark tests on different retrodiction models to assess their reliability and usefulness for hypothesis
testing.

The models used here are very simple yet surprisingly effective and we believe that combining this approach
with for more evolved algorithms from image denoising can be of significant use for image-analysis based exper-
iments and technologies in physics, astrophysics, medical imaging or fluorescence microscopy.
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