164 research outputs found

    Criminal Law

    Get PDF

    Quantum interferometry with and without an external phase reference

    Full text link
    We discuss the role of an external phase reference in quantum interferometry. We point out inconsistencies in the literature with regard to the use of the quantum Fisher information (QFI) in phase estimation interferometric schemes. We discuss the interferometric schemes with and without an external phase reference and show a proper way to use QFI in both situations.Comment: 4 pages, 2 figures (formulas corrected, conclusions unchanged

    Compatibility in multiparameter quantum metrology

    Get PDF
    Simultaneous estimation of multiple parameters in quantum metrological models is complicated by factors relating to the (i) existence of a single probe state allowing for optimal sensitivity for all parameters of interest, (ii) existence of a single measurement optimally extracting information from the probe state on all the parameters, and (iii) statistical independence of the estimated parameters. We consider the situation when these concerns present no obstacle and for every estimated parameter the variance obtained in the multiparameter scheme is equal to that of an optimal scheme for that parameter alone, assuming all other parameters are perfectly known. We call such models compatible. In establishing a rigorous theoretical framework for investigating compatibility, we clarify some ambiguities and inconsistencies present in the literature and discuss several examples to highlight interesting features of unitary and non-unitary parameter estimation, as well as deriving new bounds for physical problems of interest, such as the simultaneous estimation of phase and local dephasing.Comment: v2: Corrected form of the Holevo Cramer-Rao bound, other minor fixe

    Preliminary investigations of elemental content, microporosity, and specific surface area of porous rocks using PIXE and X-ray microtomography techniques

    Get PDF
    Determination of physical properties of porous geological materials is of great importance for oil industry. The knowledge of rocks properties is usually obtained from porosity studies such as pore size distribution, specific surface area determination, and hydrodynamic permeability calculations. This study describes determination of elemental composition and measurements of the particular physical properties of geological samples (porous sandstone rocks) by means of the nuclear and X-ray microprobes at the Institute of Nuclear Physics, Polish Academy of Sciences in Kraków, Poland. The special emphasis has been put on the computed microtomography method. Measurements have been carried out in close cooperation with Department of Geophysics, FGGEP AGH in Kraków, Poland. Chemical composition of the Rotliegend sandstone rock samples (few millimeters diameter), extracted from a borehole at 2679.6 m, 2741.4 m and 2742.4 m depth have been investigated using the 2.2 MeV proton beam (proton induced X-ray emission technique). Next, measurements of the porosity and the specific surface area of the pore space have been carried out using the X-ray microtomography technique. Basing on microtomographic data obtained with the high spatial resolution, simulations of the fluid dynamic in the void space of porous media have been carried out. Lattice Boltzmann method in the 3DQ19 geometrical model has been used in order to predict the hydraulic permeability of the media. In order to avoid viscosity-permeability dependence the multiple-relaxation-time model with half-way bounce back boundary conditions has been used. Computing power-consuming processing has been performed with the use of modern grid infrastructure

    Non-asymptotic analysis of quantum metrology protocols beyond the Cramér-Rao bound

    Get PDF
    Many results in the quantum metrology literature use the Cramér-Rao bound and the Fisher information to compare different quantum estimation strategies. However, there are several assumptions that go into the construction of these tools, and these limitations are sometimes not taken into account. While a strategy that utilises this method can considerably simplify the problem and is valid asymptotically, to have a rigorous and fair comparison we need to adopt a more general approach. In this work we use a methodology based on Bayesian inference to understand what happens when the Cramér-Rao bound is not valid. In particular we quantify the impact of these restrictions on the overall performance of a wide range of schemes including those commonly employed for the estimation of optical phases. We calculate the number of observations and the minimum prior knowledge that are needed such that the Cramér-Rao bound is a valid approximation. Since these requirements are state-dependent, the usual conclusions that can be drawn from the standard methods do not always hold when the analysis is more carefully performed. These results have important implications for the analysis of theory and experiments in quantum metrology

    Tumor Angiogenesis Phenotyping by Nanoparticle-facilitated Magnetic Resonance and Near-infrared Fluorescence Molecular Imaging

    Get PDF
    AbstractOne of the challenges of tailored antiangiogenic therapy is the ability to adequately monitor the angiogenic activity of a malignancy in response to treatment. The αvβ3 integrin, highly overexpressed on newly formed tumor vessels, has been successfully used as a target for Arg-Gly-Asp (RGD)-functionalized nanoparticle contrast agents. In the present study, an RGD-functionalized nanocarrier was used to image ongoing angiogenesis in two different xenograft tumor models with varying intensities of angiogenesis (LS174T > EW7). To that end, iron oxide nanocrystals were included in the core of the nanoparticles to provide contrast for T2*-weighted magnetic resonance imaging (MRI), whereas the fluorophore Cy7 was attached to the surface to enable near-infrared fluorescence (NIRF) imaging. The mouse tumor models were used to test the potential of the nanoparticle probe in combination with dual modality imaging for in vivo detection of tumor angiogenesis. Pre-contrast and post-contrast images (4 hours) were acquired at a 9.4-T MRI system and revealed significant differences in the nanoparticle accumulation patterns between the two tumor models. In the case of the highly vascularized LS174T tumors, the accumulation was more confined to the periphery of the tumors, where angiogenesis is predominantly occurring. NIRF imaging revealed significant differences in accumulation kinetics between the models. In conclusion, this technology can serve as an in vivo biomarker for antiangiogenesis treatment and angiogenesis phenotyping

    Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform

    Get PDF
    We present a multifunctional nanoparticle platform that has targeting moieties shielded by a matrix metalloproteinase-2 (MMP2) cleavable PEG coating. Upon incubation with MMP2 this surface-switchable coating is removed and the targeting ligands become available for binding. The concept was evaluated in vitro using biotin and αvβ3-integrin-specific RGD-peptide functionalized nanoparticles.National Heart, Lung, and Blood InstituteNational Institutes of Health (U.S.) (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C

    Quantum interferometry with three-dimensional geometry

    Get PDF
    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure
    corecore