211 research outputs found

    Resolved Kinematics of Runaway and Field OB Stars in the Small Magellanic Cloud

    Full text link
    We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5 +/- 5.0 km/s. This unambiguously demonstrates that these two regions are kinematically distinct: the Wing is moving away from the Bar, and towards the Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is consistent with models for a recent, direct collision between the Clouds. We present transverse velocity distributions for our field OB stars, confirming that unbound runaways comprise on the order of half our sample, possibly more. Using eclipsing binaries and double-lined spectroscopic binaries as tracers of dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers of runaways accelerated by supernova kicks, we find significant contributions from both populations. The data suggest that HMXBs have lower velocity dispersion relative to dynamically ejected binaries, consistent with the former corresponding to less energetic supernova kicks that failed to unbind the components. Evidence suggests that our fast runaways are dominated by dynamical, rather than supernova, ejections.Comment: Accepted to ApJ Letters. 10 pages, 4 figure

    Learning cellular morphology with neural networks

    Get PDF
    Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction as well as automated detection of synapses. However, methods for automating the morphological analysis of nanometer-resolution reconstructions are less established, despite the diversity of possible applications. Here, we introduce cellular morphology neural networks (CMNs), based on multi-view projections sampled from automatically reconstructed cellular fragments of arbitrary size and shape. Using unsupervised training, we infer morphology embeddings (Neuron2vec) of neuron reconstructions and train CMNs to identify glia cells in a supervised classification paradigm, which are then used to resolve neuron reconstruction errors. Finally, we demonstrate that CMNs can be used to identify subcellular compartments and the cell types of neuron reconstructions

    π-Conjugation and End Group Effects in Long Cumulenes: Raman Spectroscopy and DFT Calculations

    Get PDF
    We have investigated the structure and spectroscopic properties of cumulenic carbon chains, focusing on the peculiar π-conjugation properties and end-group effects that influence their behavior. With support from Density Functional Theory (DFT) calculations, we have analyzed the IR and Raman spectra of cumulenes characterized by different end-capping groups and we have related them to the bond length alternation (BLA) pattern and local spectroscopic parameters associated with the CC bonds along the sp-carbon chain. For cumulenes we observe a breakdown of the correlation existing in polyynes among frequencies, Raman intensities of the Ʀ line (longitudinal CC stretching modes), and BLA. While the low Ʀ line frequency and equalized CC bonds would indicate the “metallic” character of cumulenic species, we obtain an unusually strong Raman intensity, which is typical of bond-alternated (semiconductive) structures. DFT calculations reveal that this is a consequence of π-electron conjugation, which markedly extends from the sp-carbon chain to the aryl rings belonging to the end groups. These findings suggest the existence of a strong electronic, vibrational and structural coupling between sp-carbon chains and sp2-carbon species, which could play a key role in nanostructured sp/sp2-hybrid carbon materials (e.g., linear carbon chains coupled to graphene domains). Within this context, Raman spectroscopy is a valuable tool for the detailed characterization of the molecular properties of this kind of materials

    Swimmer-tracer scattering at low Reynolds number

    Full text link
    Understanding the stochastic dynamics of tracer particles in active fluids is important for identifying the physical properties of flow generating objects such as colloids, bacteria or algae. Here, we study both analytically and numerically the scattering of a tracer particle in different types of time-dependent, hydrodynamic flow fields. Specifically, we compare the tracer motion induced by an externally driven colloid with the one generated by various self-motile, multi-sphere swimmers. Our results suggest that force-free swimmers generically induce loop-shaped tracer trajectories. The specific topological structure of these loops is determined by the hydrodynamic properties of the microswimmer. Quantitative estimates for typical experimental conditions imply that the loops survive on average even if Brownian motion effects are taken into account.Comment: 14 pages, to appear in Soft Matte

    Neoadjuvant chemotherapy and trastuzumab versus neoadjuvant chemotherapy followed by post-operative trastuzumab for patients with HER2-positive breast cancer

    Get PDF
    Neoadjuvant chemotherapy plus trastuzumab (NCT) increases the rate of pathological complete response (pCR) and event-free survival (EFS) compared to neoadjuvant chemotherapy (NC) alone in women with HER2 positive breast cancer (BC). pCR in this setting is associated with improved EFS. Whether NCT preferentially improves EFS in comparison to NC followed by adjuvant trastuzumab initiated postoperatively (NCAT) has not been addressed. Using clinical data from women with HER2 positive BC treated at 7 European institutions between 2007 and 2010 we sought to investigate the impact on breast cancer outcomes of concomitant (NCT) versus sequential (NCAT) treatment in HER2 positive early BC. The unadjusted hazard ratio (HR) for event free survival with NCT compared with NCAT was 0.63 (95% CI 0.37–1.08; p = 0.091). Multivariable analysis revealed that treatment group, tumour size and ER status were significantly associated with EFS from diagnosis. In the whole group NCT was associated with a reduced risk of an event relative to NCAT, an effect that was confined to ER negative (HR: 0.25; 95% CI, 0.10–0.62; p = 0.003) as opposed to ER positive tumours (HR: 1.07; 95% CI, 0.46–2.52; p = 0.869). HER2 positive/ER negative BC treated with NC gain greatest survival benefit when trastuzumab is administered in both the neoadjuvant and adjuvant period rather than in the adjuvant period alone. These data support the early introduction of targeted combination therapy in HER2 positive/ER negative BC

    FKBPL is associated with metabolic parameters and is a novel determinant of cardiovascular disease.

    Get PDF
    Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). As disturbed angiogenesis and endothelial dysfunction are strongly implicated in T2D and CVD, we aimed to investigate the association between a novel anti-angiogenic protein, FK506-binding protein like (FKBPL), and these diseases. Plasma FKBPL was quantified by ELISA cross-sectionally in 353 adults, consisting of 234 T2D and 119 non-diabetic subjects with/without CVD, matched for age, BMI and gender. FKBPL levels were higher in T2D (adjusted mean: 2.03 ng/ml ± 0.90 SD) vs. non-diabetic subjects (adjusted mean: 1.79 ng/ml ± 0.89 SD, p = 0.02), but only after adjustment for CVD status. In T2D, FKBPL was negatively correlated with fasting blood glucose, HbA1c and diastolic blood pressure (DBP), and positively correlated with age, known diabetes duration, waist/hip ratio, urinary albumin/creatinine ratio (ACR) and fasting C-peptide. FKBPL plasma concentrations were increased in the presence of CVD, but only in the non-diabetic group (CVD: 2.02 ng/ml ± 0.75 SD vs. no CVD: 1.68 ng/ml ± 0.79 SD, p = 0.02). In non-diabetic subjects, FKBPL was positively correlated with an established biomarker for CVD, B-type Natriuretic Peptide (BNP), and echocardiographic parameters of diastolic dysfunction. FKBPL was a determinant of CVD in the non-diabetic group in addition to age, gender, total-cholesterol and systolic blood pressure (SBP). FKBPL may be a useful anti-angiogenic biomarker in CVD in the absence of diabetes and could represent a novel CVD mechanism

    Stationarity, soft ergodicity, and entropy in relativistic systems

    Get PDF
    Recent molecular dynamics simulations show that a dilute relativistic gas equilibrates to a Juettner velocity distribution if ensemble velocities are measured simultaneously in the observer frame. The analysis of relativistic Brownian motion processes, on the other hand, implies that stationary one-particle distributions can differ depending on the underlying time-parameterizations. Using molecular dynamics simulations, we demonstrate how this relativistic phenomenon can be understood within a deterministic model system. We show that, depending on the time-parameterization, one can distinguish different types of soft ergodicity on the level of the one-particle distributions. Our analysis further reveals a close connection between time parameters and entropy in special relativity. A combination of different time-parameterizations can potentially be useful in simulations that combine molecular dynamics algorithms with randomized particle creation, annihilation, or decay processes.Comment: 4 page

    An intimate collaboration between peroxisomes and lipid bodies

    Get PDF
    Although peroxisomes oxidize lipids, the metabolism of lipid bodies and peroxisomes is thought to be largely uncoupled from one another. In this study, using oleic acid–cultured Saccharomyces cerevisiae as a model system, we provide evidence that lipid bodies and peroxisomes have a close physiological relationship. Peroxisomes adhere stably to lipid bodies, and they can even extend processes into lipid body cores. Biochemical experiments and proteomic analysis of the purified lipid bodies suggest that these processes are limited to enzymes of fatty acid β oxidation. Peroxisomes that are unable to oxidize fatty acids promote novel structures within lipid bodies (“gnarls”), which may be organized arrays of accumulated free fatty acids. However, gnarls are suppressed, and fatty acids are not accumulated in the absence of peroxisomal membranes. Our results suggest that the extensive physical contact between peroxisomes and lipid bodies promotes the coupling of lipolysis within lipid bodies with peroxisomal fatty acid oxidation
    • …
    corecore