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FKBPL is associated with metabolic 
parameters and is a novel 
determinant of cardiovascular 
disease
Andrzej S. Januszewski1, Chris J. Watson2, Vikki O’Neill3, Kenneth McDonald4,5, 
Mark Ledwidge4,5, Tracy Robson6, Alicia J. Jenkins1, Anthony C. Keech1 & 
Lana McClements2,7*

Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). As disturbed 
angiogenesis and endothelial dysfunction are strongly implicated in T2D and CVD, we aimed to 
investigate the association between a novel anti-angiogenic protein, FK506-binding protein like 
(FKBPL), and these diseases. Plasma FKBPL was quantified by ELISA cross-sectionally in 353 adults, 
consisting of 234 T2D and 119 non–diabetic subjects with/without CVD, matched for age, BMI and 
gender. FKBPL levels were higher in T2D (adjusted mean: 2.03 ng/ml ± 0.90 SD) vs. non-diabetic 
subjects (adjusted mean: 1.79 ng/ml ± 0.89 SD, p = 0.02), but only after adjustment for CVD status. 
In T2D, FKBPL was negatively correlated with fasting blood glucose, HbA1c and diastolic blood 
pressure (DBP), and positively correlated with age, known diabetes duration, waist/hip ratio, urinary 
albumin/creatinine ratio (ACR) and fasting C-peptide. FKBPL plasma concentrations were increased 
in the presence of CVD, but only in the non-diabetic group (CVD: 2.02 ng/ml ± 0.75 SD vs. no CVD: 
1.68 ng/ml ± 0.79 SD, p = 0.02). In non-diabetic subjects, FKBPL was positively correlated with an 
established biomarker for CVD, B-type Natriuretic Peptide (BNP), and echocardiographic parameters 
of diastolic dysfunction. FKBPL was a determinant of CVD in the non-diabetic group in addition to age, 
gender, total-cholesterol and systolic blood pressure (SBP). FKBPL may be a useful anti-angiogenic 
biomarker in CVD in the absence of diabetes and could represent a novel CVD mechanism.

Abbreviations
DBP	� Diastolic blood pressure
SBP	� Systolic blood pressure
ACR​	� Albumin/Creatinine ratio
BNP	� B-type natriuretic peptide
T2D	� Type 2 diabetes mellitus
CVD	� Cardiovascular disease
FKBPL	� FK506 binding protein like
BMI	� Body mass index

Diabetes is becoming an epidemic disease of global proportion with over 460 million people living with the 
condition in 2019; type 2 diabetes mellitus (T2D) accounts for the majority1. People with diabetes have up to 
three-fold higher2 incidence of cardiovascular disease (CVD), the leading cause of death globally3. Despite several 
long-term clinical trials, such as UKPDS, showing that glucose lowering strategies are effective in reducing the 
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incidence of CVD in diabetes, this is still significantly higher even in optimally treated patients4. Therefore, it is 
clear that better stratification of patients and more effective personalised treatment strategies are needed. Natriu-
retic Peptides (NPs), including B-type Natriuretic Peptide (BNP) and N-terminal pro BNP (NT-proBNP), are 
the most reliable biomarkers for identifying people with heart failure (HF), both in heart failure with preserved 
ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), previously known as diastolic and 
systolic HF, respectively5. NPs have also been shown to predict future major adverse cardiovascular events in 
patients with CVD risk factors6. Inflammation appears to be one of the main underlying mechanisms leading 
to CVD in diabetes, whereas in the absence of diabetes other mechanisms are also implicated including angio-
genesis, remodelling and metabolism7. Identifying novel mechanisms, which can be explored as biomarkers 
or therapeutic targets of both T2D and/or CVD, is important for the prevention of associated complications.

FK506 binding-protein like (FKBPL) is a novel angiogenesis-related protein, which inhibits endothelial cell 
migration through disruption of actin/tubulin dynamics via the CD44 pathway8,9, and regulates glucocorticoid 
receptor activity10. Recently, FKBPL has also been shown to target inflammatory the STAT3 pathway11. A first-in-
class pre-clinical candidate peptide, AD-01, based on the active anti-angiogenic domain of FKBPL, was developed 
and has been extensively tested pre-clinically8,12,13. A clinical therapeutic peptide, ALM201, has completed a 
Phase I clinical trial for the treatment of solid tumours (EudraCT No: 2014-001175-31)14. As anticipated, FKBPL 
haploinsufficient (Fkbpl+/-) mice demonstrated that FKBPL has a critical role in physiological, developmental 
and pathological angiogenesis; blood vessel development was also impaired when FKBPL was knocked down 
in zebrafish15. Interestingly, homozygous knockout of the FKBPL gene led to embryonic lethality, highlighting 
its important role in developmental angiogenesis. Notably, Fkbpl+/− embryos were viable, however they showed 
signs of early endothelial dysfunction15, but developed normally with some level of vascular dysfunction and 
leakiness15.

Vascular and endothelial dysfunction precipitated by hyperglycaemia are well-studied aberrant mechanisms 
in diabetes and CVD16–18. Microangiopathy, as a result of endothelial dysfunction and angiogenic imbalance, is 
implicated in the development of CVD in diabetes19. Therefore, since FKBPL regulates angiogenesis and gluco-
corticoid receptor signalling, we hypothesised that it could also have a role in the pathogenesis of vascular dam-
age in T2D as well as CVD. The main aims of our study were to investigate the relationship between circulating 
FKBPL levels and the presence of T2D and/or CVD and determine the correlations with metabolic and cardiac 
function parameters. This report investigates circulating FKBPL levels in diabetes and/or CVD for the first time.

Methods
Subjects and samples.  Plasma samples used in this study were collected from 234 subjects with T2D 
aged 50–75 years as part of the prospective, randomised, double-blind, placebo controlled Fenofibrate Interven-
tion and Event Lowering in Diabetes (FIELD) study, from well-characterised patients who were recruited and 
screened but not randomised thereafter to receive fenofibrate or placebo. Participants in the FIELD study were 
statin-naïve and had the following lipid profile: total-cholesterol concentration of 3.0–6.5 mmol/L and a total-
cholesterol/HDL-cholesterol ratio of 4.0 or more or plasma triglyceride of 1.0–5.0 mmol/L. Further details on 
the criteria for the recruitment into the FIELD study were described previously20 (ClinicalTrials.gov identifier: 
ISRCTN64783481). These subjects were matched for age, body mass index (BMI) and gender to non-diabetic 
controls, at an approximately 2:1 ratio (234 T2D plasma samples vs. 130 non-diabetes plasma samples), drawn 
from the STOP-HF study21 (ClinicalTrials.gov identifier: NCT00921960). The STOP-HF study is a prospective, 
randomized, controlled trial, which recruited patients with at least one risk factor for ventricular dysfunction, 
including hypertension, hypercholesterolaemia, obesity, coronary artery disease or diabetes mellitus22,23. For 
this study, we only selected participants without diabetes. Non-diabetic patients from the STOP-HF cohort were 
confirmed by measuring fasting blood glucose levels. This is part of the usual STOP-HF annual review pro-

Table 1.   Clinical characteristics of control and type 2 diabetes groups. Continuous data are expressed as 
mean (standard deviation) and categorical data as the number of subjects (%). p values < 0.05 (statistically 
significant). Independent samples t-tests and χ2 tests were used as appropriate. HDL-C: High-density 
lipoprotein cholesterol; SBP: Systolic blood pressure; DBP: Diastolic blood pressure. p values <0.05 are in bold.

Clinical characteristics Control (n = 119) Type 2 diabetes (n = 234) p value

Age (years) 64 ± 12 62 ± 7 0.23

BMI (kg/m2) 28.8 ± 5.4 28.5 ± 5.0 0.59

Male (%) 60 51 0.14

CVD (%) 41 19 < 0.001

Smoking category Yes No Ex Yes No Ex

Smoking (%) 13 46 39 8.1 45.7 45.3 0.92

SBP (mmHg) 135 ± 19 139 ± 19 0.03

DBP (mmHg) 83 ± 12 81 ± 11 0.16

Total cholesterol (mmol/L) 4.7 ± 1.0 5.5 ± 1.2 < 0.001

HDL-C (mmol/L) 1.38 ± 0.51 1.25 ± 0.33 0.02

FKBPL (ng/ml) 1.82 ± 0.79 2.00 ± 0.93 0.07

FKBPL (ng/ml) adjusted for CVD status 1.79 ± 0.89 2.03 ± 0.90 0.02
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gramme. Patients with readings outside the normal range were referred for follow up. Individual glucose read-
ings are not available for the analysis in this study. Study participant characteristics from both study groups are 
presented in Table 1. All subjects provided written informed consent to participate in the relevant parent FIELD 
or STOP-HF study, inclusive of biomarker studies, as per the principles outlined in the Declaration of Helsinki. 
The STOP-HF study was approved by the research ethics committee of St. Vincent’s University Hospital, Dublin. 
The FIELD study was approved by the University of Sydney Human Research Ethics Committee. The current 
analysis was approved as part of both studies.

FKBPL analysis.  Plasma FKBPL concentrations were measured in 364 patients using a validated FKBPL 
ELISA assay (Cloud-Clone, China) as per manufacturer’s instructions. Samples were stored at − 80  °C until 
analysis. Average intra- and inter-assay CV for control samples, were 5% and 19%, respectively. Percentages 
of samples from T2D, non-diabetic control and those with or without CVD loaded onto each plate were kept 
constant. Plasma samples were analysed in duplicate, and FKBPL concentration for each sample was calculated 
using a 4-parameter fit based on the standard curve for each plate. Any duplicate samples with CV (%) > 15% 
were reanalysed and samples were only included in the analysis if the CV was < 15%. For 11 non-diabetic sub-
jects there was inadequate sample volume for reanalysis. Demographics of subjects that we did not include were 
not significantly different from those who were included (Supplementary Table 1). BNP was measured at the 
point-of-care in the STOP-HF cohort only as previously reported21.

Statistical analysis.  Analysis was performed on 119 Controls and 234 T2D cases. Group comparisons 
were analysed using independent samples t-tests (for continuous variables) or Mann–Whitney U-test, depend-
ing on the normality of the continuous data distribution, or using the χ2-test (with Yates’ continuity correction) 
for categorical variables. Analysis of variance (ANOVA) was used to compare FKBPL levels across 3 smoking 
categories. Penalised logistic regression was used to derive an efficient model assessing associations of clinical 
characteristics and FKBPL levels with the presence of clinically evident CVD. The correlation between two con-
tinuous variables was assessed based on the Pearson’s correlation coefficient. Statistical significance was defined 
as p < 0.05 (two-sided). Statistical analyses were performed using SPSS software, version 24 (IBM Corp, Armonk, 
NY, USA).

Results
Subject demographics.  Study participants without diabetes (n = 119) and with T2D (n = 234) were well 
matched for age, gender and BMI (Table 1). The percentage of subjects with known CVD was twice as high in 
the non-diabetic group, however both groups represent only a small subgroup from each of the relevant studies. 
Smoking status and diastolic blood pressure (DBP) were similar in both groups, whereas systolic blood pressure 
(SBP) and total cholesterol were higher in patients with T2D. High-density lipoprotein cholesterol (HDL-C) 
levels were lower in subjects with T2D.

FKBPL plasma concentration in T2D and/or CVD.  There was no difference in FKBPL plasma concen-
tration between those with T2D and non-diabetic subjects. However, after adjustment for CVD status, FKBPL 
levels were higher in T2D (adjusted mean: 2.03  ng/ml ± 0.90 SD) vs. non-diabetic subjects (adjusted mean: 
1.79 ng/ml ± 0.89 SD, p = 0.02) (Table 1, Supplementary Fig. 1A). When analysing associations of FKBPL lev-
els with CVD, in a univariate analysis, no differences were observed between subjects with vs. without CVD 
irrespective of diabetes (without CVD: 1.89 ng/ml ± 0.91 SD vs. CVD: 2.09 ng/ml ± 0.82 SD, p = 0.07). However, 
in the non-diabetic group, plasma FKBPL concentrations were higher in those with than without CVD (CVD: 
2.02 ng/ml ± 0.75 SD vs without CVD: 1.68 ng/ml ± 0.79 SD, p = 0.02). In diabetes only group, no difference in 
FKBPL levels was observed between subjects with vs without CVD (control: 1.97  ng/ml ± 0.93 SD vs. CVD: 
2.16 ng/ml ± 0.9 SD, p = 0.21; Supplementary Table 2).

FKBPL as a potential diagnostic biomarker of CVD in the absence of diabetes.  FKBPL plasma 
concentration was modestly associated with CVD status in non-diabetic adults, with an area under the curve 
(AUC) on the receiver operating characteristic (ROC) curve of 0.62 (p = 0.02; Supplementary Fig. 1B). When 
clinical parameters including age, SBP, cholesterol and gender were included in addition to FKBPL, the AUC 
increased to 0.72 (p = 0.01; Supplementary Fig.  1C). Using both diabetes and non-diabetes samples together 
(n = 351), FKBPL, age, SBP, cholesterol, gender and the presence of diabetes, the AUC was 0.73 (p < 0.001; Sup-
plementary Fig. 1D). A well-established biomarker of CVD, BNP24, in the non-diabetic group provided an AUC 
of 0.70 (p = 0.001; Supplementary Fig.  2A). FKBPL and BNP were positively correlated (rs = 0.299, p = 0.001, 
n = 119). BNP together with clinical parameters (age, SBP, cholesterol and gender) showed an AUC of 0.77 
(p = 0.001; Supplementary Fig. 2B). Furthermore, using penalised logistic regression, we identified a number of 
determinants of CVD in patients without diabetes and only one clinical determinant i.e. age in the T2D group 
(Table 2). In the non-diabetic group, FKBPL, age, SBP, total cholesterol and gender were associated with CVD 
(Table  2). Interestingly, total cholesterol was negatively correlated with the incidence of CVD, however, this 
could be related to the use of statins, considering this was a high-CVD risk non-diabetic group from the STOP-
HF trial. Interestingly, FKBPL plasma levels were higher in men compared to women (2.19 ng/ml ± 0.89 SD vs. 
1.66 ng/ml ± 0.79 SD, p˂0.001, Supplementary Table 3). Also, a difference in FKBPL levels was observed between 
smokers (2.43 ng/ml ± 1.05 SD), ex-smokers (2.13 ng/ml ± 0.84 SD) and non-smokers (1.68 ng/ml ± 0.81 SD) in 
the aggregated groups (ANOVA p ˂0.001; Supplementary Table 4). 

Furthermore, FKBPL demonstrated strong correlations with several clinical characteristics and traditional 
risk factors in the T2D group. As shown in Table 3, FKBPL was positively correlated with age, known duration of 
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diabetes, C-peptide level, urinary albumin to creatinine ratio (ACR), and waist to hip ratio. Negative correlations 
were observed between FKBPL and blood glucose, HbA1c, and DBP. In the non-diabetic control group, FKBPL 
showed correlation with measurements of cardiac structure and function based on a number of echocardiogra-
phy parameters. Notably, parameters that are important features in diastolic dysfunction were correlated with 
FKBPL levels, including positive FKBPL correlations with left atrium volume (p = 0.001) and size (p = 0.003), 
interventricular septal thickness at end of diastole (IVSd; p = 0.049), and deceleration time (DT; p  <0.001), and 
negative correlations with peak E (p = 0.049) and E/A ratio (p = 0.048; Table 4).

Table 2.   Determinants of cardiovascular disease in patients with and without type 2 diabetes—penalised 
logistic regression coefficients are shown.

Determinants Control T2D

BMI 0 0

FKBPL 0.23 0

Age 0.018 0.044

SBP 0.002 0

DBP 0 0

HDL 0 0

Total cholesterol  − 0.360 0

Gender 0.217 0

Smoking 0 0

Table 3.   Univariate correlations between FKBPL and other clinical parameters in diabetes. p values <0.05 are 
in bold.

Variable N

Correlation

Coefficient p value

Age (years) 234 0.30 < 0.001

Duration of diabetes (years) 234 0.18 0.006

Glucose (mmol/L) 233 − 0.14 0.03

HbA1c (%) 233 − 0.13 0.04

C-peptide (nmol/L) 231 0.18 0.007

Urinary ACR​ 229 0.20 0.002

Waist/Hip ratio 234 0.22 0.001

SBP (mmHg) 232 0.04 0.544

DBP (mmHg) 232 − 0.14 0.03

Triglycerides (mmol/L) 234 − 0.07 0.282

HDL-C (mmol/L) 234 − 0.11 0.099

Total cholesterol (mmol/L) 234 − 0.03 0.96

Table 4.   Correlations between FKBPL and ECHO variables in non-diabetes/control group. p values <0.05 are 
in bold.

ECHO variable N

Correlation

Coefficient p value

EF 119 − 0.04 0.68

LA volume 119 0.30 0.001

LV mass 119 0.15 0.10

LVIDd 119 0.07 0.44

LVIDs 119 0.06 0.55

IVSd 119 0.18 0.049

PWd 119 0.098 0.29

Aortic_root 119 0.11 0.22

Left_atrium size 119 0.27 0.003

Peak_E 116 − 0.18 0.049

DT (ms) 116 0.33  < 0.001

E/A ratio 119 − 0.18 0.048
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Discussion
In this cross-sectional study, we investigated the associations between circulating FKBPL in T2D and CVD using 
age-, BMI- and gender-matched participant samples from two major studies; T2D samples were obtained from 
the FIELD study20 and non-diabetic high CVD risk samples from the STOP-HF study21. We demonstrated that 
FKBPL plasma concentrations were higher in patients with T2D than in controls, when adjusted for the presence 
of CVD. Furthermore, FKBPL levels were negatively correlated with characteristic metabolic parameters for T2D, 
glucose and HbA1c, and positively correlated with C-peptide (reflecting endogenous insulin secretion) and the 
duration of diabetes, in the FIELD study samples. Given that FKBPL is involved in glucocorticoid receptor sig-
nalling, and we have demonstrated correlations with glycaemia and insulin secretion, FKBPL may be implicated 
in the complex mechanisms of glucose control; specifically we observed that better glucose control is associated 
with high levels of FKBPL10. The role of glucocorticoids via glucocorticoid receptors is well established in glucose 
production and metabolism by stimulating gluconeogenesis, and reducing insulin secretion and glucose uptake25. 
It is possible that this represents a compensatory mechanism in diabetes, which may be mediated e.g. via miR-
NAs involved in insulin signalling and glucose transport via the PI3K/Akt/m-TOR signalling pathway. Whilst 
this is speculative, other members of the immunophilin family, which include FKBPL, regulate this pathway 
and are also implicated in T2D phenotype and associated vascular complications26. Inhibition of the PI3K/Akt/
mTOR pathway has been shown to lead to cardiomyocyte autophagy triggered by reactive advance glycation end 
products in diabetes27. The mTOR pathway has been shown to regulate insulin secretion and signalling as well 
as endothelial function thus it is also implicated in cardiovascular complications of diabetes28. Nevertheless, this 
needs to be investigated in future basic science and clinical studies.

In our T2D group, positive correlations were also observed between FKBPL levels and age, urinary ACR, 
waist/hip ratio whereas FKBPL was negatively correlated with DBP. As age was the only determinant of CVD in 
the T2D group it is possible that FKBPL is indirectly involved in cardiovascular complications of T2D, which 
merits further investigation into the FKBPL mechanism rather than its biomarker potential in diabetes. Previ-
ously published work on FKBPL demonstrated that FKBPL has a key role in physiological and pathological 
angiogenesis and that whilst Fkbpl+/− haploinsufficient mice displayed a pro-angiogenic phenotype, early signs 
of vascular dysfunction were also observed15. There is a plethora of evidence to suggest that in the presence of 
diabetes, endothelial dysfunction leads to increased vascular permeability and irregular angiogenesis by induc-
ing inflammation, which can lead to atherosclerosis and CVD29,30. Nevertheless, in our T2D group there was 
no difference in FKBPL plasma concentrations between subjects with and without CVD, though low subject 
numbers may limit statistical power. Interestingly, in the non-diabetic group, the plasma concentration of FKBPL 
was higher in the presence of CVD. This might suggest that in the presence of diabetes there is a compensatory 
vascular mechanism, which attenuates this increase in FKBPL levels. In terms of the strength of association of 
FKBPL level with CVD, in the non-diabetic group, the AUC was comparable to that of an established biomarker 
for CVD, BNP, when adjusted for important clinical parameters. A similar AUC was observed when both groups 
were combined together and adjusted for clinical parameters and the presence of diabetes. Previous reports on 
the biomarker role of BNP in asymptomatic (Stage-B) heart failure demonstrated similar AUC for both diabetic 
and non-diabetic patients31. In the same group, BNP was found to be positively correlated with age, female 
gender and DBP32, whereas, in this study, FKBPL was positively correlated with age and BNP and negatively 
correlated with DBP in the diabetic group (Table 3). FKBPL plasma concentration in female participants from 
both groups were lower than male participants (Supplementary Table 3). Previous reports from the STOP-HF 
trial demonstrated that screening with BNP in primary care and combined with a collaborative care interven-
tion reduced cardiovascular complications, including LV systolic dysfunction, diastolic dysfunction and heart 
failure21. Based on our results and the AUC measurements from the ROC curve, in a subgroup of patients from 
the STOP-HF trial, both FKBPL and BNP demonstrate similar biomarker potential. Using penalised logistic 
regression, FKBPL was identified to be associated with CVD only in the non-diabetic patient group together with 
age, SBP, total cholesterol and gender. These clinical parameters have been associated with CVD in a number of 
studies previously33,34. Furthermore, in the non-diabetic group, FKBPL was correlated with echocardiographic 
parameters indicative of diastolic dysfunction. Disturbed angiogenesis has been previously implicated in diastolic 
dysfunction35 and in HFpEF36. Even though we did not have echocardiogram data available in the diabetic group 
to explore for correlations with FKBPL, previous reports in diabetic rats demonstrated that increased cardiac 
angiogenesis is associated with reduced diastolic dysfunction37, which could suggest that reduction in FKBPL 
might be beneficial in these settings.

Strengths and limitations
This is the first cross-sectional study that shows associations between plasma FKBPL levels and T2D and CVD 
status using samples from two clinical studies with well-characterised subjects. Study limitations include its 
cross-sectional nature, and modest sample sizes. In the non-diabetic group, the number of people with CVD 
was overrepresented in comparison to the diabetic group because this study recruited subjects with CVD risk 
factors; the selected subgroup excluded people with diabetes. Nevertheless, a strength was that the two groups 
were well matched in terms of age, BMI and gender. We did not have echocardiographic parameters and BNP 
measurements for the diabetic group, which limited correlations between FKBPL and echocardiographic param-
eters and BNP only to non-diabetic group of patients. Whilst the current commercially available FKBPL ELISA 
kit had modest CVs, each sample was analysed in duplicate on the same plate and only those with a CV under 
15% were included. The biomarker potential of FKBPL was investigated in combination with other established 
clinical risk factors for CVD and the levels correlated with characteristic metabolic and cardiac parameters.
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Conclusions
In this cross-sectional study, we identified associations between the novel anti-angiogenic protein, FKBPL, and 
T2D parameters and CVD. FKBPL could be involved in the pathogenesis of cardiometabolic diseases including 
T2D, CVD and cardiac dysfunction. The biomarker role of FKBPL in CVD should be investigated further in 
larger studies, including cohorts of non-diabetic patients at low-risk for CVD. The therapeutic and diagnostic 
role of FKBPL in this setting may warrant further investigation, particularly in the absence of diabetes.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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