408 research outputs found

    Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar

    No full text
    International audienceThe need for monitoring slope movements increases with the increasing need for new areas to inhabit and new land management requirements. Rock-slope monitoring implies the use of a database, but also the use of other tools to facilitate the analysis of movements. The experience and the philosophy of monitoring the top of the Randa rockfall scar which is sliding down into the valley near Randa village in Switzerland are presented. The database includes data correction tools, display facilities and information about benchmarks. Tools for analysing the movement acceleration and spatial changes and forecasting movement are also presented. Using the database and its tools it was possible to discriminate errors from critical slope movement. This demonstrates the efficiency of these tools in monitoring the Randa scar

    Spatial pattern of landslides in Swiss Rhone valley

    Get PDF
    The present study analyses the spatial pattern of quaternary gravitational slope deformations (GSD) and historical/present-day instabilities (HPI) inventoried in the Swiss Rhone Valley. The main objective is to test if these events are clustered (spatial attraction) or randomly distributed (spatial independency). Moreover, analogies with the cluster behaviour of earthquakes inventoried in the same area were examined. The Ripley's K-function was applied to measure and test for randomness. This indicator allows describing the spatial pattern of a point process at increasing distance values. To account for the non-constant intensity of the geological phenomena, a modification of the K-function for inhomogeneous point processes was adopted. The specific goal is to explore the spatial attraction (i.e. cluster behaviour) among landslide events and between gravitational slope deformations and earthquakes. To discover if the two classes of instabilities (GSD and HPI) are spatially independently distributed, the cross K-function was computed. The results show that all the geological events under study are spatially clustered at a well-defined distance range. GSD and HPI show a similar pattern distribution with clusters in the range 0.75?9 km. The cross K-function reveals an attraction between the two classes of instabilities in the range 0?4 km confirming that HPI are more prone to occur within large-scale slope deformations. The K-function computed for GSD and earthquakes indicates that both present a cluster tendency in the range 0?10 km, suggesting that earthquakes could represent a potential predisposing factor which could influence the GSD distribution

    Hépatite B et migrants : Doit-on mieux faire ?

    Get PDF
    L'hépatite B chronique touche plus de 5% de la population mondiale. Les migrants, et en particulier les requérants d'asile font partie d'une population à risque d'être infectée puisque la plupart viennent de pays à moyenne ou haute endémicité. Pourtant, en Suisse, aucun dépistage de cette infection chronique ne leur est proposé systématiquement. Dans une résolution émise en 2010, l'OMS appelle à promouvoir la vaccination, mais aussi le dépistage des individus à risque, ainsi que la prise en charge des individus infectés. Sur la base d'une enquête bidirectionnelle chez des requérants d'asile du canton de Vaud, le taux de positivité pour les Ac anti-HBc est estimé à 42% et celui des AgHBs à 8%. Les stratégies de dépistage et de prise en charge possibles sont discutées à la lumière de ces données. L'identification des migrants infectés permettrait leur prise en charge, diminuant les complications, ainsi que la transmission du virus entre migrants et à la population locale

    Kinematics of the 1991 Randa rockslides (Valais, Switzerland)

    No full text
    International audienceAbout 22 mio m3 of rock fell from a cliff near the village of Randa (10 km north of Zermatt, Switzerland) on 18 April 1991. A second retrogressive rockslide of about 7 mio m3 followed on 9 May 1991. At present, a rock mass situated above the scarp is still slowly moving toward the valley, involving several mio m 3 of rock. A kinematic approach to study of this well-documented rockslide was made "a posteriori" in order to identify the parameters relevant to the detection of such failures involving large volumes of rock. A 3-D model of the pre-rockslide geometry is presented, and is used to interpret the geostructural, hydrogeological, and chronological data. The steepness of the cliff, the massive lithology (mainly orthogneiss), the location on a topographic ridge outcropping at the confluence between a glacial cirque and the main valley, and the existence of previous events of instability were the preexisting field conditions that affected the stability of the area. The structural cause of instability was a 30 dipping, more than 500-m-long, persistent fault, which cut the base of the rock face. Together with a steeply dipping set of persistent joints, this basal discontinuity delimited a 20- mio-m 3 rock block, with a potential sliding direction approximately parallel to the axis of the valley. To the North, the fractures delimiting the unstable mass were less persistent and separated by rock bridges; this rock volume acted as key block. This topographic and structural configuration was freed from glacier support about 15 000 years BP. The various mechanisms of degradation that led to the final loss of equilibrium required various amounts of time. During the late-and post-glacial periods, seismic activity and weathering of the orthogneiss along the fissure network due to infiltration of meteoric water, joined to reduce the mechanical resistance of the sliding surfaces and the rocks bridges. In addition, crystallisation of clay minerals due to mineralogical alteration of the fault gouge accumulated along the sliding surface, reducing its angle of internal friction, and sealing the surface against water circulation. Once this basal fracture began to act as an aquiclude, the seasonal increase of the hydraulic head in the fissures promoted hydraulic fracturing on the highly stressed edges of the key block. Acceleration of this mechanical degradation occurred during the 20-year period before the 1991 rockslides, giving rise to an increasing rockfall activity, that constituted a forewarning sign. The final triggering event corresponded to a snow-melt period with high water table, leading to fracturation around the key block. On 18 April 1991, the key block finally failed, allowing subsidiary orthogneiss blocks to slide. They fell in turn over a period of several hours. The 9 May 1991, rockslide was the first of a series of expected future retrogressive reequilibrium stages of the very fractured and decompressed paragneisses, which lie on the orthogneiss base cut by the 18 April event

    Comparison of remote sensing techniques for geostructural analysis and cliff monitoring in coastal areas of high tourist attraction: the case study of Polignano a Mare (Southern Italy)

    Get PDF
    Rock slope failures in urban areas may represent a serious hazard for human life, as well as private and public property, even on the occasion of sporadic episodes. Prevention and mitigation measures indispensably require a proper rock mass characterization, which is often achieved by means of time-consuming, costly and dangerous field surveys. In the last decades, remote sensing devices such as high-resolution digital cameras, laser scanners and drones have been widely used as supplementary techniques for rock slope analysis and monitoring, especially in poorly accessible areas, or in sites of large extension. Although several methods for rock mass characterization by means of remote sensing techniques have been reported in specific studies, there are very few contributions that focused on comparing the different methods in an attempt to establish their advantages and limitations. With this study, we performed digital photogrammetry, Terrestrial Laser Scanning and Unmanned Aerial Vehicle surveys on a cliff located in a popular tourist attraction site, characterized by complex geological and geomorphological settings, as well as by disturbance elements such as vegetation and human activities. For each point cloud, we applied geostructural analysis by means of semi-automatic methods, and then compared multi-temporal acquisitions for cliff monitoring. By quantitative comparison of the results and validation by means of conventional geostructural field surveys, the pros and cons of each method were outlined in attempt to depict the conditions and goals the different techniques seem to be more suitable fo

    Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings

    Get PDF
    The InfraRed Thermography (IRT) technique is gaining increasing popularity in the geo-sciences. Although several studies on the use of this technique for rock mass characterization were reported in the literature, its applicability is challenging in complex environments, characterized by poor accessibility, lithological heterogeneity, karst features and disturbances, such as vegetation and human activities. This paper reports the results of specific tests carried out to explore the application of IRT methods, supported by UAV surveys, for rock mass characterization in complex conditions. In detail, a 24-h monitoring was performed on an appropriate case study to assess which type of information can be collected and what issues can be expected. The results of the thermograms were compared with data reported in the literature and discussed. A novel method to detect correlations between the temperature profiles at the air-rock interfaces and the rock mass properties is presented. The main advantages, limitations and suggestions in order to take full advantage of the IRT technique in complex conditions are reported in the final section

    2D quantitative analysis of fractures from high-resolution photos for the geomechanical characterization of rock masses

    Get PDF
    The identification of discontinuity sets and their properties is among the key factors for the geomechanical characterization of rock masses, which is fundamental for performing stability analyses, and for planning prevention and mitigation measures as well. In practice, discontinuity data are collected throughout difficult and time-consuming field surveys, especially when dealing with areas of wide extension, difficult accessibility, covered by dense vegetation, or with adverse weather conditions. Consequently, even experienced operators may introduce sampling errors or misinterpretations, leading to biased geomechanical models for the investigated rock mass. In the last decades, new remote techniques such as photogrammetry, Light Detection and Ranging (LiDAR), Unmanned Aerial Vehicle (UAV) and InfraRed Thermography (IRT) have been introduced to overcome the limits of conventional surveys. We propose here a new tool for extracting information on the fracture pattern in rock masses, based on remote sensing methods, with particular reference to the analysis of high-resolution georeferenced photos. The first step consists in applying the Structure from Motion (SfM) technique on photos acquired by means of digital cameras and UAV techniques. Once aligned and georeferenced, the orthophotos are exported in a GIS software, to draw the fracture traces at an appropriate scale. We developed a MATLAB routine to extract information on the geostructural setting of rock masses by performing a quantitative 2D analysis of the fracture traces, based on formulas reported in the literature. The code was written by testing few experimental and simple traces and was successively validated on an orthophoto from a real case study. Currently, the script plots the fracture traces as polylines and calculates their orientation (strike) and length. Subsequently, it detects the main discontinuity sets by fitting an experimental composite Gaussian curve on histograms showing the number of discontinuities according to their orientation, and splitting the curve in simpler Gaussian curves, with peaks corresponding to the main discontinuity sets. Then, for each set, a linear scanline intersecting the highest number of traces is plotted, and the apparent and real spacing are calculated. In a second step, a grid of circular scanlines covering the whole area where the traces are located is plotted, and the mean trace intensity, trace density and trace length estimators are calculated. It is expected to test the presented tools on other case studies, in order to optimize them and calculate additional metrics, such as persistence and block sizes, useful to the geomechanical characterization of rock masses. As a future perspective, a similar approach could be investigated for 3D analyses from point clouds
    corecore