58,644 research outputs found

    Absorption spectrum of (H2O)-O-18 in the range 12 400-14 520 cm(-1)

    Get PDF
    Fourier transform spectra recorded using (a) natural abundance water vapor, (b) (H2O)-O-18-enriched water vapor, and (c) (H2O)-O-17-enriched water vapor are analyzed. The ratio of intensities in three spectra is used to identify 927 lines due to absorption by (H2O)-O-18. Intensities and self-broadening parameters are derived for these lines. Using theoretical linelists, comparisons with previously assigned (H2O)-O-16 spectra, and automatic searches for combination differences, 747 lines are assigned. These lines belong to 14 vibrational states in the 3nu + delta and 4nu polyads. Newly determined (H2O)-O-18 vibrational band origins include 4nu(1) at 13 793.09 cm(-1), 3nu(1) + nu(3) at 13 795.40 cm(-1), 2nu(1) + 2nu(3) at 14 188.82 cm(-1), nu(1) + 3nu(3) at 14 276.34 cm(-1), and 2nu(2) + 2nu(2) + nu(3) at 13 612.71 cm(-1). These results are compared with data in HITRAN. (C) 2002 Elsevier Science (USA)

    Loopy belief propagation and probabilistic image processing

    Get PDF
    Estimation of hyperparameters by maximization of the marginal likelihood in probabilistic image processing is investigated by using the cluster variation method. The algorithms are substantially equivalent to generalized loopy belief propagation

    Transport through a single Anderson impurity coupled to one normal and two superconducting leads

    Full text link
    We study the interplay between the Kondo and Andreev-Josephson effects in a quantum dot coupled to one normal and two superconducting (SC) leads. In the large gap limit, the low-energy states of this system can be described exactly by a local Fermi liquid for the interacting Bogoliubov particles. The phase shift and the renormalized parameters for the Bogoliubov particles vary depending on the Josephson phase between the two SC leads. We explore the precise features of a crossover that occurs between the Kondo singlet and local Cooper-pairing states as the Josephson phase varies, using the numerical renormalization group approach.Comment: 4 pages, 4 figures, contribution to SCES 201

    Quantum anholonomies in time-dependent Aharonov-Bohm rings

    Full text link
    Anholonomies in eigenstates are studied through time-dependent variations of a magnetic flux in an Aharonov-Bohm ring. The anholonomies in the eigenenergy and the expectation values of eigenstates are shown to persist beyond the adiabatic regime. The choice of the gauge of the magnetic flux is shown to be crucial to clarify the relationship of these anholonomies to the eigenspace anholonomy, which is described by a non-Abelian connection in the adiabatic limit.Comment: 6 pages. Fixed typ

    Electrophoresis of a rod macroion under polyelectrolyte salt: Is mobility reversed for DNA?

    Full text link
    By molecular dynamics simulation, we study the charge inversion phenomenon of a rod macroion in the presence of polyelectrolyte counterions. We simulate electrophoresis of the macroion under an applied electric field. When both counterions and coions are polyelectrolytes, charge inversion occurs if the line charge density of the counterions is larger than that of the coions. For the macroion of surface charge density equal to that of the DNA, the reversed mobility is realized either with adsorption of the multivalent counterion polyelectrolyte or the combination of electrostatics and other mechanisms including the short-range attraction potential or the mechanical twining of polyelectrolyte around the rod axis.Comment: 8 pages, 5 figures, Applied Statistical Physics of Molecular Engineering (Mexico, 2003). Journal of Physics: Condensed Matters, in press (2004). Journal of Physics: Condensed Matters, in press (2004

    Multi-State Image Restoration by Transmission of Bit-Decomposed Data

    Get PDF
    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise, where m \in {1,....,Q-1} is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate which is more effective to use the binary data for transmission or to send the raw Q-Ising values. By using the mean-field model, we first analyze the performance of our method quantitatively. Then we obtain the static and dynamical properties of restoration using the bit-decomposed data. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table

    A Novel Approach in Constraining Electron Spectra in Blazar Jets: The Case of Markarian 421

    Full text link
    We report results from the observations of the well studied TeV blazar Mrk 421 with the Swift and the Suzaku satellites in December 2008. During the observation, Mrk 421 was found in a relatively low activity state, with the corresponding 2-10 keV flux of 3×10103 \times 10^{-10} erg/s/cm^2. For the purpose of robust constraining the UV-to-X-ray emission continuum we selected only the data corresponding to truly simultaneous time intervals between Swift and Suzaku, allowing us to obtain a good-quality, broad-band spectrum despite a modest length (0.6 ksec) exposure. We analyzed the spectrum with the parametric forward-fitting SYNCHROTRON model implemented in XSPEC assuming two different representations of the underlying electron energy distribution, both well motivated by the current particle acceleration models: a power-law distribution above the minimum energy γmin\gamma_{\rm min} with an exponential cutoff at the maximum energy γmax\gamma_{\rm max}, and a modified ultra-relativistic Maxwellian with an equilibrium energy γeq\gamma_{\rm eq}. We found that the latter implies unlikely physical conditions within the blazar zone of Mrk 421. On the other hand, the exponentially moderated power-law electron distribution gives two possible sets of the model parameters: (i) flat spectrum dNe/dγγ1.91dN'_e/d\gamma \propto \gamma^{-1.91} with low minimum electron energy γmin<103\gamma_{\rm min}<10^3, and (ii) steep spectrum γ2.77\propto \gamma^{-2.77} with high minimum electron energy γmin2×104\gamma_{\rm min}\simeq 2\times10^4. We discuss different interpretations of both possibilities in the context of a diffusive acceleration of electrons at relativistic, sub- or superluminal shocks. We also comment on how exactly the gamma-ray data can be used to discriminate between the proposed different scenarios.Comment: 18 pages, 2 figures; accepted for publication in the Astrophysical Journa

    Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology

    Full text link
    Although the observed universe appears to be geometrically flat, it could have one of 18 global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others. This global topology of the universe imposes boundary conditions on quantum fields and affects the vacuum energy density via Casimir effect. In a spacetime with such a nontrivial topology, the vacuum energy density is shifted from its value in a simply-connected spacetime. In this paper, the vacuum expectation value of the stress-energy tensor for a massless scalar field is calculated in all 17 multiply-connected, flat and homogeneous spacetimes with different global topologies. It is found that the vacuum energy density is lowered relative to the Minkowski vacuum level in all spacetimes and that the stress-energy tensor becomes position-dependent in spacetimes that involve reflections and rotations.Comment: 25 pages, 11 figure

    Collisional energy transfer in two-component plasmas

    Full text link
    The friction in plasmas consisting of two species with different temperatures is discussed together with the consequent energy transfer. It is shown that the friction between the two species has no effect on the ion acoustic mode in a quasi-neutral plasma. Using the Poisson equation instead of the quasi-neutrality reveals the possibility for an instability driven by the collisional energy transfer. However, the different starting temperatures of the two species imply an evolving equilibrium. It is shown that the relaxation time of the equilibrium electron-ion plasma is, in fact, always shorter than the growth rate time, and the instability can thus never effectively take place. The results obtained here should contribute to the definite clarification of some contradictory results obtained in the past
    corecore