2,146 research outputs found

    Dissipative collapse of the adiabatic piston

    Get PDF
    An adiabatic piston, separating two granular gases prepared in the same macroscopic state, is found to eventually collapse to one of the sides. This new instability is explained by a simple macroscopic theory which is furthermore in qualitative agreement with hard disk molecular dynamics.Comment: 7 pages, 5 figure

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    Generalized Jarzynski Equality under Nonequilibrium Feedback Control

    Full text link
    The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a feedback control. The new terms that arise as a consequence of the feedback describe the mutual information content obtained by measurement and the efficacy of the feedback control. Our results lead to a generalized fluctuation-dissipation theorem that reflects the readout information, and can be experimentally tested using small thermodynamic systems. We illustrate our general results by an introducing "information ratchet," which can transport a Brownian particle in one direction and extract a positive work from the particle

    Detection of Macroscopic Entanglement by Correlation of Local Observables

    Full text link
    We propose a correlation of local observables on many sites in macroscopic quantum systems. By measuring the correlation one can detect, if any, superposition of macroscopically distinct states, which we call macroscopic entanglement, in arbitrary quantum states that are (effectively) homogeneous. Using this property, we also propose an index of macroscopic entanglement.Comment: Although the index q was proposed for mixed states, it is also applicable to pure states, on which we fix minor bugs (that will be reported in PRL as erratum). The conclusions of the paper remain unchanged. (4 pages, no figures.

    Magnetic properties and critical behavior of disordered Fe_{1-x}Ru_x alloys: a Monte Carlo approach

    Full text link
    We study the critical behavior of a quenched random-exchange Ising model with competing interactions on a bcc lattice. This model was introduced in the study of the magnetic behavior of Fe_{1-x}Ru_x alloys for ruthenium concentrations x=0%, x=4%, x=6%, and x=8%. Our study is carried out within a Monte Carlo approach, with the aid of a re-weighting multiple histogram technique. By means of a finite-size scaling analysis of several thermodynamic quantities, taking into account up to the leading irrelevant scaling field term, we find estimates of the critical exponents \alpha, \beta, \gamma, and \nu, and of the critical temperatures of the model. Our results for x=0% are in excellent agreement with those for the three-dimensional pure Ising model in the literature. We also show that our critical exponent estimates for the disordered cases are consistent with those reported for the transition line between paramagnetic and ferromagnetic phases of both randomly dilute and ±J\pm J Ising models. We compare the behavior of the magnetization as a function of temperature with that obtained by Paduani and Branco (2008), qualitatively confirming the mean-field result. However, the comparison of the critical temperatures obtained in this work with experimental measurements suggest that the model (initially obtained in a mean-field approach) needs to be modified

    Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces

    Get PDF
    Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.Comment: 20 pages, 10 figure

    Arbitrarily slow, non-quasistatic, isothermal transformations

    Full text link
    For an overdamped colloidal particle diffusing in a fluid in a controllable, virtual potential, we show that arbitrarily slow transformations, produced by smooth deformations of a double-well potential, need not be reversible. The arbitrarily slow transformations do need to be fast compared to the barrier crossing time, but that time can be extremely long. We consider two types of cyclic, isothermal transformations of a double-well potential. Both start and end in the same equilibrium state, and both use the same basic operations---but in different order. By measuring the work for finite cycle times and extrapolating to infinite times, we found that one transformation required no work, while the other required a finite amount of work, no matter how slowly it was carried out. The difference traces back to the observation that when time is reversed, the two protocols have different outcomes, when carried out arbitrarily slowly. A recently derived formula relating work production to the relative entropy of forward and backward path probabilities predicts the observed work average.Comment: 6 pages, 6 figure

    Pendulum Mode Thermal Noise in Advanced Interferometers: A comparison of Fused Silica Fibers and Ribbons in the Presence of Surface Loss

    Get PDF
    The use of fused-silica ribbons as suspensions in gravitational wave interferometers can result in significant improvements in pendulum mode thermal noise. Surface loss sets a lower bound to the level of noise achievable, at what level depends on the dissipation depth and other physical parameters. For LIGO II, the high breaking strength of pristine fused silica filaments, the correct choice of ribbon aspect ratio (to minimize thermoelastic damping), and low dissipation depth combined with the other achievable parameters can reduce the pendulum mode thermal noise in a ribbon suspension well below the radiation pressure noise. Despite producing higher levels of pendulum mode thermal noise, cylindrical fiber suspensions provide an acceptable alternative for LIGO II, should unforeseen problems with ribbon suspensions arise.Comment: Submitted to Physics Letters A (Dec. 14, 1999). Resubmitted to Physics Letters A (Apr. 3, 2000) after internal (LSC) review process. PACS - 04.80.Nn, 95.55.Ym, 05.40.C

    An Exact Solution to O(26) Sigma Model coupled to 2-D Gravity

    Full text link
    By a mapping to the bosonic string theory, we present an exact solution to the O(26) sigma model coupled to 2-D quantum gravity. In particular, we obtain the exact gravitational dressing to the various matter operators classified by the irreducible representations of O(26). We also derive the exact form of the gravitationally modified beta function for the original coupling constant e2e^2. The relation between our exact solution and the asymptotic solution given in ref[3] is discussed in various aspects.Comment: 10 pages, pupt-144

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties
    • 

    corecore