1,658 research outputs found

    Reduced dimension modeling of leading edge turbulent interaction noise

    No full text
    A computational aeroacoustics approach is used to model the effects of real airfoil geometry on leading edge turbulent interaction noise for symmetric airfoils at zero angle of attack. For the first time, one-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulent disturbances are modeled instead of single frequency transverse gusts, which previous computational studies of leading edge noise have been confined to. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed, and it is shown that accurate noise predictions for symmetric airfoils can be made by modeling only the transverse disturbances, which reduces the computational expense of simulations. Additionally, the two-component turbulent synthesis method is used to model the effects of airfoil thickness on the noise for thicknesses ranging from 2% to 12%. By using sufficient airfoil thicknesses to show trends, it is found that airfoil thickness will reduce the noise at high frequency, and that the sound power P will reduce linearly with increasing airfoil thickness

    Direct Determination of the Kinetics of Oxygen Diffusion to the Photocytes of a Bioluminescent Elaterid Larva, Measurement of Gas- and Aqueous-Phase Diffusional Barriers and Modelling of Oxygen Supply

    Get PDF
    We describe the development and use of a direct kinetic technique to determine the time taken for oxygen to diffuse from the external environment into the light-producing cells (photocytes) in the prothorax of bioluminescent larvae of Pyrearinus termitilluminans. This was achieved by measuring the time course of the pseudoflash induced through sequential anoxia followed by normoxia. We have also determined the separate times taken for this oxygen diffusion in gaseous and tissue (predominantly aqueous) phases by using helium and nitrogen as the carrier gas. Of the total time taken for diffusion, that in the gas phase required 613+/-136 ms (mean +/- s.e. m., N=5) whilst that in the aqueous phase required 1313+/-187 ms. These values imply pathlengths of diffusion in the gaseous and aqueous phases of 4.80x10(-)(3)+/-0.53x10(-)(3) and 8. 89x10(-)(5)+/-0.61x10(-)(5 )m, respectively. In addition, the pathlength of gas-phase diffusion was used to derive a parameter relating to the tortuosity of the tracheal system. These values, together with those obtained upon bioluminescent oxygen consumption, have been used to model oxygen supply to the photocyte. From these studies, it would also appear that the modulation of tracheolar fluid levels might be a significant mechanism of control of tissue oxygen levels in at least some insects

    Gallbladder metastasis from renal cell carcinoma mimicking acute cholecystitis

    Get PDF
    Renal cell carcinoma constitutes about 3% of adult malignancies. It has a high metastatic potential associated with synchronous or metachronous metastatic disease. Further, it is known to metastasize mainly to the lung, bone, brain, liver, or adrenal glands. In very rare cases it can metastasize to the gallbladder mimicking acute cholecystitis on clinical exam. In this case we present a patient who developed a gallbladder metastasis five years after a renal cell carcinoma mimicking acute cholecystitis

    Measurement of Oxygen Partial Pressure, its Control During Hypoxia and Hyperoxia, and its Effect upon Light Emission in a Bioluminescent Elaterid Larva

    Get PDF
    This study investigates the respiratory physiology of bioluminescent larvae of Pyrearinus termitilluminans in relation to their tolerance to hypoxia and hyperoxia and to the supply of oxygen for bioluminescence. The partial pressure of oxygen (P(O2)) was measured within the bioluminescent prothorax by in vivo electron paramagnetic resonance (EPR) oximetry following acclimation of larvae to hypoxic, normoxic and hyperoxic (normobaric) atmospheres and during periods of bioluminescence (during normoxia). The P(O2) in the prothorax during exposure to an external P(O2) of 15.2, 160 and 760 mmHg was 10.3+/-2.6, 134+/-0.9 and 725+/-73 mmHg respectively (mean +/- s.d., N=5; 1 mmHg=0.1333 kPa). Oxygen supply to the larvae via gas exchange through the spiracles, measured by determining the rate of water loss, was also studied in the above atmospheres and was found not to be dependent upon P(O2). The data indicated that there is little to no active control of extracellular tissue P(O2) within the prothorax of these larvae. The reduction in prothorax P(O2) observed during either attack-response-provoked bioluminescence or sustained feeding-related bioluminescence in a normoxic atmosphere was variable, but fell within the range 10-25 mmHg. The effect of hypoxic atmospheres on bioluminescence was measured to estimate the intracellular P(O2) within the photocytes of the prothorax. Above a threshold value of 50-80 mmHg, bioluminescence was unaffected by P(O2). Below this threshold, an approximately linear relationship between P(O2) and bioluminescence was observed. Taken together with the extracellular P(O2) measurements, this suggests that control of P(O2) within the photocyte may occur. This work establishes that EPR oximetry is a valuable technique for long-term measurement of tissue P(O2) in insects and can provide valuable insights into their respiratory physiology. It also raises questions regarding the hypothesis that bioluminescence can have a significant antioxidative effect by reduction of prothorax P(O2 )through oxygen consumption

    Physiological Indicators for User Trust in Machine Learning with Influence Enhanced Fact-Checking

    Full text link
    © IFIP International Federation for Information Processing 2019. Trustworthy Machine Learning (ML) is one of significant challenges of “black-box” ML for its wide impact on practical applications. This paper investigates the effects of presentation of influence of training data points on machine learning predictions to boost user trust. A framework of fact-checking for boosting user trust is proposed in a predictive decision making scenario to allow users to interactively check the training data points with different influences on the prediction by using parallel coordinates based visualization. This work also investigates the feasibility of physiological signals such as Galvanic Skin Response (GSR) and Blood Volume Pulse (BVP) as indicators for user trust in predictive decision making. A user study found that the presentation of influences of training data points significantly increases the user trust in predictions, but only for training data points with higher influence values under the high model performance condition, where users can justify their actions with more similar facts to the testing data point. The physiological signal analysis showed that GSR and BVP features correlate to user trust under different influence and model performance conditions. These findings suggest that physiological indicators can be integrated into the user interface of AI applications to automatically communicate user trust variations in predictive decision making

    Asexuality: Classification and characterization

    Get PDF
    This is a post-print version of the article. The official published version can be obtaineed at the link below.The term “asexual” has been defined in many different ways and asexuality has received very little research attention. In a small qualitative study (N = 4), individuals who self-identified as asexual were interviewed to help formulate hypotheses for a larger study. The second larger study was an online survey drawn from a convenience sample designed to better characterize asexuality and to test predictors of asexual identity. A convenience sample of 1,146 individuals (N = 41 self-identified asexual) completed online questionnaires assessing sexual history, sexual inhibition and excitation, sexual desire, and an open-response questionnaire concerning asexual identity. Asexuals reported significantly less desire for sex with a partner, lower sexual arousability, and lower sexual excitation but did not differ consistently from non-asexuals in their sexual inhibition scores or their desire to masturbate. Content analyses supported the idea that low sexual desire is the primary feature predicting asexual identity

    Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making

    Get PDF
    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more ‘bankruptcies’. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage

    A pedagogic appraisal of the Priority Heuristic

    Get PDF
    We have explored how science and mathematics teachers made decisions when confronted with a dilemma in which a fictitious young woman, Deborah, may choose to have an operation that might address a painful spinal condition. We sought to explore the extent to which psychological heuristic models, in particular the Priority Heuristic, might successfully describe the decision-making process of these teachers and how an analysis of the role of personal and emotional factors in shaping the decision-making process might inform pedagogical design. A novel aspect of this study is that the setting in which the decision-making process is examined contrasts sharply with those used in psychological experiments. We found that to some extent, even in this contrasting setting, the Priority Heuristic could describe these teachers' decision-making. Further analysis of the transcripts yielded some insights into limitations on scope as well the richness and complexity in how personal factors were brought to bear. We see these limitations as design opportunities for educational intervention
    corecore