1,065 research outputs found

    Half-Metallic Ferromagnetism in the Heusler Compound Co2_2FeSi revealed by Resistivity, Magnetoresistance, and Anomalous Hall Effect measurements

    Full text link
    We present electrical transport data for single-crystalline Co2_2FeSi which provide clear-cut evidence that this Heusler compound is truly a half-metallic ferromagnet, i.e. it possesses perfect spin-polarization. More specifically, the temperature dependence of ρ\rho is governed by electron scattering off magnons which are thermally excited over a sizeable gap Δ100K\Delta\approx 100 K (9meV\sim 9 meV) separating the electronic majority states at the Fermi level from the unoccupied minority states. As a consequence, electron-magnon scattering is only relevant at TΔT\gtrsim\Delta but freezes out at lower temperatures, i.e., the spin-polarization of the electrons at the Fermi level remains practically perfect for TΔT\lesssim\Delta. The gapped magnon population has a decisive influence on the magnetoresistance and the anomalous Hall effect (AHE): i) The magnetoresistance changes its sign at T100KT\sim 100 K, ii) the anomalous Hall coefficient is strongly temperature dependent at T100KT\gtrsim 100 K and compatible with Berry phase related and/or side-jump electronic deflection, whereas it is practically temperature-independent at lower temperatures

    Theory of a Scanning Tunneling Microscope with a Two-Protrusion Tip

    Full text link
    We consider a scanning tunneling microscope (STM) such that tunneling occurs through two atomically sharp protrusions on its tip. When the two protrusions are separated by at least several atomic spacings, the differential conductance of this STM depends on the electronic transport in the sample between the protrusions. Furthermore two-protrusion tips commonly occur during STM tip preparation. We explore possible applications to probing dynamical impurity potentials on a metallic surface and local transport in an anisotropic superconductor.Comment: revtex, 11 pages, 6 figures upon reques

    Upper critical field and de Haas-van Alphen oscillations in KOs2_2O6_6 measured in a hybrid magnet

    Full text link
    Magnetic torque measurements have been performed on a KOs2_2O6_6 single crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The upper critical field is determined to be \sim30 T. De Haas-van Alphen oscillations are observed. A large mass enhancement of (1+λ\lambda) = m/mbandm^* / m_{band} = 7.6 is found. It is suggested that, for the large upper critical field to be reconciled with Pauli paramagnetic limiting, the observed mass enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    Multijunction Solar Cell Development and Production at Spectrolab

    Get PDF
    Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5

    Preparation of Carrier-Free 59Fe

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Up-regulated expression of LAMP2 and autophagy activity during neuroendocrine differentiation of prostate cancer LNCaP cells

    Get PDF
    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer

    Behavior of Yersinia enterocolitica in Foods

    Get PDF
    Yersinia enterocolitica are ubiquitous, being isolated frequently from soil, water, animals, and a variety of foods. They comprise a biochemically heterogeneous group that can survive and grow at refrigeration temperatures. The ability to propagate at refrigeration temperatures is of considerable significance in food hygiene. Virulent strains of Yersinia invade mammalian cells such as HeLa cells in tissue culture. Two chromosomal genes, inv and ail, were identified for cell invasion of mammalian. The pathogen can cause diarrhoea, appendicitis and post-infection arthritis may occur in a small proportion of cases. The most common transmission route of pathogenic Y. enterocolitica is thought to be fecal-oral via contaminated food. Direct person-to-person contact is rare. Occasionally, pathogenic Y. enterocolitica has been detected in vegetables and environmental water; thus, vegetables and untreated water are also potential sources of human yersiniosis. However, the isolation rates of pathogenic Y. enterocolitica have been low, which may be due to the limited sensitivity of the detection methods. To identify other possible transmission vehicles, different food items should be studied more extensively. Many factors related to the epidemiology of Y. enterocolitica, such as sources, transmission routes, and predominating genotypes remain obscure because of the low sensitivity of detection methods
    corecore