247 research outputs found

    Isolation, biochemical and molecular characterization of strains of coliforms from the water sample collected from Shivnath river

    Get PDF
    Coliform bacteria include organisms like Escherichia coli, Enterobacter sp., Klebsiella sp. and Citrobacter sp.and are gram negative, facultative anaerobic, non-sporulating and lactose fermenting organisms. E. coli is used as the indicator organism for detection of faecal contamination of water. Conventional methods for the detection of Coliforms in water include microbial culture technique in lactose containing media, Biochemical characterization, study of cell morphology, colony morphology etc. These methods are time consuming with limited specificity. DNA based molecular techniques like 16S rRNA gene sequencing is highly specific. In this research work, the16S rRNA gene sequencing technique was used to characterize the two isolates from water samples of Shivnath River after the above said preliminary tests were conducted. The two strains of coliforms identified by this technique were Escherichia coli strain GA and Enterobacter cloacae strain AB6

    CHSI/VA collaborative development of an asynchronous digital solution to increase veteran access to smoking cessation medications

    Get PDF
    Introduction: Smoking is a major modifiable health risk factor in the United States especially for veterans. Approximately, 10 million adults search online for assistance in quitting smoking each year. These signify a need for decreased barriers to smoking cessation medications, especially for smokers with a desire to quit.Research Question or Hypothesis: The aim of this study is to develop a digital solution to increase veteran access to smoking cessation medications.Study Design: Quality Improvement StudyMethods: Design and development of an online smoking cessation platform that allows online request for smoking cessation medications. This platform will also measure adoption and use by smokers when offered by physicians.Results: We successfully developed an asynchronous online platform that allows the following: (1) secure invitation from a physician; (2) a quick consultation in form of a questionnaire filled out by the patient; (3) review of patient profile by physician; (4) prescription of medication and (5) continuous evaluation of patients as they progress through the program.Conclusion: This platform was successfully developed and is in the process of being tested for effectiveness at the VA Hospital in Muskogee, Oklahoma

    Universal cloning of continuous quantum variables

    Get PDF
    The cloning of quantum variables with continuous spectra is analyzed. A universal - or Gaussian - quantum cloning machine is exhibited that copies equally well the states of two conjugate variables such as position and momentum. It also duplicates all coherent states with a fidelity of 2/3. More generally, the copies are shown to obey a no-cloning Heisenberg-like uncertainty relation.Comment: 4 pages, RevTex. Minor revisions, added explicit cloning transformation, added reference

    Complete Genome Sequence of Serotype III Streptococcus agalactiae Sequence Type 17 Strain 874391.

    Get PDF
    Here we report the complete genome sequence of Streptococcus agalactiae strain 874391. This serotype III isolate is a member of the hypervirulent sequence type 17 (ST-17) lineage that causes a disproportionate number of cases of invasive disease in humans and mammals. A brief historical context of the strain is discussed

    Variability of Dosing and Number of Medications Needed to Achieve Adequate Sedation in Mechanically Ventilated Pediatric Intensive Care Patients.

    Get PDF
    Children admitted to the pediatric intensive care unit (PICU) often require multiple medications to achieve comfort and sedation. Although starting doses are available, these medications are typically titrated to the desired effect. Both oversedation and undersedation are associated with adverse events. The aim of this retrospective study was to evaluate cumulative medication burden necessary to achieve comfort in patients in the PICU and determine relevant predictors of medication needs. In order to account for all of the sedative medications, z-scores were used to assess the population average dose of each medication and compare each patient day to this population average. Sedation regimens for 130 patients in the PICU were evaluated. Mean overall infusion rates of fentanyl, morphine, and hydromorphone were 1.67 ± 0.81 µg/kg/hour, 0.12 ± 0.08 mg/kg/hour, and 17.84 ± 13.4 µg/kg/hour, respectively. The mean infusion rate of dexmedetomidine was 0.59 ± 0.28 µg/kg/hour, and midazolam was 0.14 ± 0.1 mg/kg/hour. Summation z-sores were used to rank the amount of sedation medication needed to achieve comfort for each individual patient for his/her PICU stay in relation to the entire sample. Patient age, weight, and length of mechanical ventilation were all significant predictors of sedation requirement. This study will provide data necessary to develop a model of cumulative medication burden needed to achieve appropriate sedation in this population. This descriptive model in appropriately ranking patients based on sedative needs is the first step in exploring potential genetic factors that may provide an insight into homing in on the appropriate sedation regimen

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Elevated acute phase proteins affect pharmacokinetics in COVID-19 trials: Lessons from the CounterCOVID - imatinib study.

    Get PDF
    This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (C <sub>max</sub> ) and trough concentration (C <sub>trough</sub> ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectively, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19

    Quantification of spatial pharmacogene expression heterogeneity in breast tumors.

    Get PDF
    BACKGROUND: Chemotherapeutic drug concentrations vary across different regions of tumors and this is thought to be involved in development of chemotherapy resistance. Insufficient drug delivery to some regions of the tumor may be due to spatial differences in expression of genes involved in the disposition, transport, and detoxification of drugs (pharmacogenes). Therefore, in this study, we analyzed the spatial expression of 286 pharmacogenes in six breast cancer tissues using the recently developed Visium spatial transcriptomics platform to (1) determine if these pharmacogenes are expressed heterogeneously across tumor tissue and (2) to determine which pharmacogenes have the most spatial expression heterogeneity. METHODS AND RESULTS: The spatial transcriptomics technology sequences the transcriptome of 55 um diameter barcoded sections (spots) across a tissue sample. We analyzed spatial gene expression profiles of four biobank-sourced breast tumor samples in addition to two breast tumor sample datasets from 10× Genomics. We define heterogeneity as the interquartile range of read counts. Collectively, we identified 8887 spots in tumor regions, 3814 in stroma, 44 in lymphocytes, and 116 in normal regions based on pathologist annotation of the tissues. We showed statistically significant differences in expression of pharmacogenes in tumor regions compared to surrounding non-tumor regions. We also observed that the most heterogeneously expressed genes within tumor regions were involved in reactive oxygen species (ROS) handling and detoxification mechanisms. GPX4, GSTP1, MGST3, SOD1, CYP4Z1, CYB5R3, GSTK1, and NAT1 showed the most heterogeneous expression within tumor regions. CONCLUSIONS: The heterogeneous expression of these pharmacogenes may have important implications for cancer therapy due to their ability to impact drug distribution and efficacy throughout the tumor. Our results suggest that chemoresistance caused by expression of GPX4, GSTP1, MGST3, and SOD1 may be intrinsic, not acquired, since the heterogeneity is not specific to chemotherapy-treated samples or cell type. Additionally, we identified candidate chemoresistance pharmacogenes that can be further tested through focused follow-up studies

    RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants

    Get PDF
    Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis
    corecore