24 research outputs found

    Controls of Sphagnum growth and the role of winter

    No full text
    Abstract Sphagnum is the major genus in northern peatlands that contributes to peat formation and carbon sequestration. Sphagnum growth in summer has been fairly well studied but the information about growth in autumn and winter is limited. Therefore, we studied how the growth of Sphagnum is seasonally distributed with a particular interest on possible winter growth. The linear increment and biomass production of three Sphagum species was measured in three Northern European bogs over a year. In all sites, our results indicate the highest annual linear increment in S. angustifolium (28 mm), followed by S. magellanicum (20 mm) and S. fuscum (13 mm), but the biomass production was fairly even among the species (189, 192 and 215 g m−2, respectively). Both linear increment and biomass production depended mostly on meteorological parameters rather than ecophysiological or microsite properties. The seasonal measurements revealed a significant linear increment and biomass production during the winter that accounted for ca. 10% and ca. 5% from the annual values, respectively. Moreover, the mean daily rates of linear increment in autumn often exceeded the increment in summer. Our results thus indicate the ability for year-around growth of Sphagna if the conditions are favorable, including during boreal winter

    Winter climate change increases physiological stress in calcareous fen bryophytes

    No full text
    Calcareous spring fens are among the rarest and most endangered wetland types worldwide. The majority of these ecosystems can be found at high latitudes, where they are affected by above average rates of climate change. Particularly winter temperatures are increasing, which results in decreased snow cover. As snow provides an insulating layer that protects ecosystems from subzero temperatures, its decrease is likely to induce stress to plants. To investigate the sensitivity of the bryophyte community – key to the functioning of calcareous spring fens – to changing climatic conditions, we studied the annual variation in ecophysiology of two dominant bryophytes: Campylium stellatum and Scorpidium scorpioides. Further, a snow removal experiment was used to simulate the effect of changing winter conditions. In both species, we observed lowest efficiency of photosystem II (Fv/Fm) in spring, indicating physiological stress, and highest chlorophyll-a, -b and carotenoid concentrations in autumn. Snow removal exacerbated physiological stress in bryophytes. Consequently Fv/Fm, pigment concentrations and chlorophyll to carotenoids ratios declined, while chlorophyll-a to -b ratios increased. Moreover, these effects of winter climate change cascaded to the growing season. C. stellatum, a low hummock inhabitor, suffered more from snow removal (annual mean decline in Fv/Fm 7.7% and 30.0% in chlorophyll-a) than S. scorpioides, a hollow species (declines 5.4% and 14.5%, respectively). Taken together, our results indicate that spring fen bryophytes are negatively impacted by winter climate change, as a result of longer frost periods and increased numbers of freeze-thaw cycles in combination with higher light intensity and dehydration.</p

    Freeze-thaw cycles simultaneously decrease peatland photosynthetic carbon uptake and ecosystem respiration

    Get PDF
    Decreasing snow cover in winter resulting from climate warming increases the incidence of freeze-thaw cycles (FTCs) in many ecosystems, including peatlands. As peatland ecosystems form a globally significant long-term carbon storage, understanding the effects of changing conditions in winter on carbon dynamics is essential. We studied how FTCs affect peatland carbon cycling by conducting mesocosm experiments with Sphagnum. Our results indicate an overall impeding effect of FTCs on Sphagnum photosynthesis, chlorophyll content, ecosystem respiration and enzymatic processes. A threefold reduction in photosynthesis in the FTC treatment was related to a decrease in chlorophyll content, showing that Sphagnum physiologically suffers from repeated FTCs. In the FTC treatment beta-glucosidase and phosphatase enzymatic activities decreased by 50% and 30%, respectively, whilst alanine remained unaffected, indicating that in peat soils short-term FTCs affect the carbon and phosphorus cycles, but not the nitrogen cycle. Long-term effects of FTCs deserve further studies.Peer reviewe

    The fate of NH4NO3 added to Sphagnum magellanicum carpets at five European mire sites

    No full text
    Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m(-2) yr(-1) were made to Sphagnum magellanicum cores at two-week intervals in situ at four sites across Europe, i.e. Lakkasuo (Finland), Mannikjarve (Estonia), Moidach More (UK) and Cote de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchatel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the held, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N:P ratio 68) and greatest in Moidach More (N:P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4+ in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Cote de Braveix were extremely low, even in the N10 treatment, but in Mannikjarve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3- were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition by Sphagnum mosses
    corecore