260 research outputs found

    Fast and stable method for simulating quantum electron dynamics

    Full text link
    A fast and stable method is formulated to compute the time evolution of a wavefunction by numerically solving the time-dependent Schr{\"o}dinger equation. This method is a real space/real time evolution method implemented by several computational techniques such as Suzuki's exponential product, Cayley's form, the finite differential method and an operator named adhesive operator. This method conserves the norm of the wavefunction, manages periodic conditions and adaptive mesh refinement technique, and is suitable for vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we confirmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.Comment: 10 pages, 35 eps figure

    Finite-size Effects in a Two-Dimensional Electron Gas with Rashba Spin-Orbit Interaction

    Get PDF
    Within the Kubo formalism, we estimate the spin-Hall conductivity in a two-dimensional electron gas with Rashba spin-orbit interaction and study its variation as a function of disorder strength and system size. The numerical algorithm employed in the calculation is based on the direct numerical integration of the time-dependent Schrodinger equation in a spin-dependent variant of the particle source method. We find that the spin-precession length, L_s controlled by the strength of the Rashba coupling, establishes the critical lengthscale that marks the significant reduction of the spin-Hall conductivity in bulk systems. In contrast, the electron mean free path, inversely proportional to the strength of disorder, appears to have only a minor effect.Comment: 5 pages, 3 figure

    Fast Algorithm for Finding the Eigenvalue Distribution of Very Large Matrices

    Get PDF
    A theoretical analysis is given of the equation of motion method, due to Alben et al., to compute the eigenvalue distribution (density of states) of very large matrices. The salient feature of this method is that for matrices of the kind encountered in quantum physics the memory and CPU requirements of this method scale linearly with the dimension of the matrix. We derive a rigorous estimate of the statistical error, supporting earlier observations that the computational efficiency of this approach increases with matrix size. We use this method and an imaginary-time version of it to compute the energy and the specific heat of three different, exactly solvable, spin-1/2 models and compare with the exact results to study the dependence of the statistical errors on sample and matrix size.Comment: 24 pages, 24 figure

    Algorithm for Linear Response Functions at Finite Temperatures: Application to ESR spectrum of s=1/2 Antiferromagnet Cu benzoate

    Full text link
    We introduce an efficient and numerically stable method for calculating linear response functions χ(q,ω)\chi(\vec{q},\omega) of quantum systems at finite temperatures. The method is a combination of numerical solution of the time-dependent Schroedinger equation, random vector representation of trace, and Chebyshev polynomial expansion of Boltzmann operator. This method should be very useful for a wide range of strongly correlated quantum systems at finite temperatures. We present an application to the ESR spectrum of s=1/2 antiferromagnet Cu benzoate.Comment: 4 pages, 4 figure

    Solid helium at high pressure: A path-integral Monte Carlo simulation

    Full text link
    Solid helium (3He and 4He) in the hcp and fcc phases has been studied by path-integral Monte Carlo. Simulations were carried out in the isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one to study the temperature and pressure dependences of isotopic effects on the crystal volume and vibrational energy in a wide parameter range. The obtained equation of state at room temperature agrees with available experimental data. The kinetic energy, E_k, of solid helium is found to be larger than the vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at low pressures, and decreases as the applied pressure is raised, converging to 1, as in a harmonic solid. Results of these simulations have been compared with those yielded by previous path integral simulations in the NVT ensemble. The validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure

    Equivalent birational embeddings II: divisors

    Full text link
    Two divisors in n\P^n are said to be Cremona equivalent if there is a Cremona modification sending one to the other. We produce infinitely many non equivalent divisorial embeddings of any variety of dimension at most 14. Then we study the special case of plane curves and rational hypersurfaces. For the latter we characterise surfaces Cremona equivalent to a plane.Comment: v2 Exposition improved, thanks to referee, unconditional characterization of surfaces Cremona equivalent to a plan

    Direct perturbation theory on the shift of Electron Spin Resonance

    Full text link
    We formulate a direct and systematic perturbation theory on the shift of the main paramagnetic peak in Electron Spin Resonance, and derive a general expression up to second order. It is applied to one-dimensional XXZ and transverse Ising models in the high field limit, to obtain explicit results including the polarization dependence for arbitrary temperature.Comment: 5 pages (no figures) in REVTE

    Quantum Dynamics of Spin Wave Propagation Through Domain Walls

    Get PDF
    Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems

    Origin of the Canonical Ensemble: Thermalization with Decoherence

    Get PDF
    We solve the time-dependent Schrodinger equation for the combination of a spin system interacting with a spin bath environment. In particular, we focus on the time development of the reduced density matrix of the spin system. Under normal circumstances we show that the environment drives the reduced density matrix to a fully decoherent state, and furthermore the diagonal elements of the reduced density matrix approach those expected for the system in the canonical ensemble. We show one exception to the normal case is if the spin system cannot exchange energy with the spin bath. Our demonstration does not rely on time-averaging of observables nor does it assume that the coupling between system and bath is weak. Our findings show that the canonical ensemble is a state that may result from pure quantum dynamics, suggesting that quantum mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp
    corecore