View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

Publications Physics and Astronomy

1-17-2007

Finite-Size Effects in a Two-Dimensional Electron
Gas with Rashba Spin-Orbit Interaction

CP.Moca
University of Oradea

D C. Marinescu

Clemson University, dcm@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs

Recommended Citation

Please use publisher's recommended citation.

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications

by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.


https://core.ac.uk/display/268629871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

PHYSICAL REVIEW B 75, 035325 (2007)

Finite-size effects in a two-dimensional electron gas with Rashba spin-orbit interaction
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2Institute of Physics, Technical University Budapest, Budapest H-1521, Hungary
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(Received 7 August 2006; revised manuscript received 5 December 2006; published 17 January 2007)

Within the Kubo formalism, we estimate the spin-Hall conductivity in a two-dimensional electron gas with
Rashba spin-orbit interaction and study its variation as a function of disorder strength and system size. The
numerical algorithm employed in the calculation is based on the direct numerical integration of the time-
dependent Schrodinger equation in a spin-dependent variant of the particle-source method. We find that the
spin-precession length L, controlled by the strength of the Rashba coupling, establishes the critical length scale
that marks the significant reduction of the spin-Hall conductivity in bulk systems. In contrast, the electron
mean free path, inversely proportional to the strength of disorder, appears to have only a minor effect.

DOI: 10.1103/PhysRevB.75.035325

I. INTRODUCTION

The physical phenomenon behind the spin-Hall effect!-
(SHE) in two-dimensional (2D) systems is the flow of a pure
spin current, spin polarized in a transverse direction, driven
by a perpendicular electric field. Its existence is conditioned
by the presence of a spin-orbit interaction (SOI), such as
Rashba-Dresselhaus,>* in n-type two-dimensional systems or
the spin-split band structure in p-type GaAs.’

In clean samples, the spin-Hall conductivity oy was pre-
dicted to have a universal, constant value of e/8r; however,
in the presence of disorder the resulting picture was less
clear. It was pointed out that in 2D infinite systems, in the
presence of short range scatterers, the vertex corrections pro-
vided the exact compensation to cancel the effect.® More-
over, an argument was made that this cancellation occurs
even for infinitesimal disorder potentials.” These conclusions
were challenged by analytic® and numerical calculations®!!
of the spin-Hall conductivity in one- and two-dimensional
finite-size mesoscopic samples, performed within the
Landauer-Biittiker formalism, where it was shown that the
effect survives up to a critical disorder strength.

Even though the robustness of the spin-Hall effect in the
presence of disorder seems to have been definitively con-
firmed by the angle-resolved optical detection of spin polar-
ization at opposite edges of a two-dimensional hole layer,'? a
better understanding of the mechanism by which disorder
and system size affect spin transport in systems with spin-
orbit interaction warrants further investigation. We focus,
therefore, on a study of the interplay between the disorder
strength, embodied in the electron mean free path / and the
spin precession length L, proportional to the spin-orbit inter-
action, in determining the spin-transport regime in finite-size
samples. Such an analysis is especially relevant in two di-
mensions where, in the absence of any additional interac-
tions, the two lengths are independent of each other and,
along with the Fermi energy, are the only relevant physical
parameters of the system.

The relationship between [ and L, and the system size L
determines the existence of four distinctive transport re-
gimes. A semiclassical approximation is appropriate for L;
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<L, when the spin coherence is lost over the length of the
sample, while L;>L corresponds to a mesoscopic regime.
When /> L the electron propagation is ballistic, while for /
< L multiple scattering events are assumed and the diffusive
regime is present.

In the following analysis, we use the Kubo formula to
estimate o,y as a function of system size and disorder in a
two-dimensional electron system. The numerical formalism
adopted here represents an extension to the spin-Hall prob-
lem of the particle-source method developed by Tanaka and
Itoh.'® This algorithm is based on the direct integration of the
time-dependent Schrodinger equation and allows the calcu-
lation of the matrix elements of Green’s functions, linear
response functions, or any combination of Green’s function
and quantum operators in a very efficient way.

The main result of this study is that the delimitation be-
tween the mesoscopic and semiclassical regimes, as reflected
by the rapid decline of the spin-Hall conductivity, is estab-
lished by L,. For system sizes smaller than L,, the spin-Hall
conductivity increases monotonically with the system size
while being weakly affected by disorder. When L>L, o,y
decreases exponentially for any amount of disorder in the
system. This result supports the conclusions of two previous
reports by Sheng et al.'* and Nomura et al.,'”> where it was
found that o remains finite up to an unspecified character-
istic length scale and vanishes in the thermodynamic limit
for any small amounts of disorder in the system. Here, we
identify this length as being determined by the spin-
precession length. Our results reflect no qualitative modifi-
cation of the overall behavior when the system evolves from
the ballistic to the diffusive regimes, crossover controlled by
the mean free path characteristic length scale. For a fixed
Fermi energy and L,, the spin-Hall conductivity decreases
monotonically with disorder for any system size, as the sys-
tem evolves from diffusive to ballistic regime.

II. THEORETICAL FRAMEWORK
A. Model

The single-particle Hamiltonian that describes the dynam-
ics of an electron of momentum p and effective mass m’ is

©2007 The American Physical Society
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written, in terms of the Pauli matrices Oy and the Rashba

coupling constant A, as
2

p

H=——
2m

+A(pry_0-ypx)' (1)

The exact diagonalization procedure that can be performed
on the Hamiltonian in the case of a clean system! becomes
impossible when disorder is included in the form of an ad-
ditional random scattering term. It is, therefore, more conve-
nient for a numerical analysis to adopt the tight-binding ap-
proximation for the many-body Hamiltonian by employing a
local-orbital basis associated with a virtual square N X N lat-
tice of constant a,. In this model, the many-body Hamil-
tonian is

H=2 eiclcia—1 2 C,Tacja+ Ve 2 [(ciiCivs, = C,‘Tlciwg)
i,a i

(i.j).a lvaxvay

- i(C,TTCmS).l + CZCH&},T)I (2

In this expression, an electron with spin « at site i, created by
clTa, is subjected to a random on-site energy as in the Ander-
son model for disorder, generated by a box distribution g;
e [-W/2,W/2]. The electron transport is described by a se-
quence of discrete hopping events. Lateral transport, without
spin flip, to an adjacent site occurs with probability 7
=h%/2m"a,, taken to be the unit of energy in our calculation,
as described by the second term in Eq. (2). Propagation
along the diagonal sites, driven by the spin-orbit interaction,
occurs with a simultaneous spin flip, as in the last term of
Eq. (2). The latter is the most important as it mixes the spin
channels and leads to a finite spin-Hall conductivity and spin
accumulations at the edges of sample. The Rashba coupling
constant is renormalized by the lattice constant to Vj
=hN/ ap.

The Kubo formula for the spin-Hall conductivity is writ-
ten as

2 2 de
— iGr(e)v,[Gr(e) = Gale)]). (3)

o= S f ﬁ(— & (8))0;[GR<8) —Ga(e)] X v,Gale)

The velocity operator is defined by the commutator: ifiv,
=[y,H], while for the spin current we adopt a traditional
expression,'® given in terms of the anticommutator between
the velocity operator and the Pauli matrix o_: i
=f{o.,v,}/4. Ggyule) represents the retarded/advanced
Green’s function. In Eq. (3), the integration over the energy
is restricted over the Fermi surface due to the presence of [
—df(e)/ de] factor.

In the tight-binding framework, the effect of disorder and
spin-orbit interaction strength on the spin-Hall conductance
was investigated previously, using the Landauer-Biittiker
formalism.!”-!8 As will be discussed in the next section, in
the present work we use a different approach in computing
Green’s function needed for the calculation of the spin-Hall
conductivity.
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B. Numerical algorithm

Since the purpose of this investigation is an analysis of
the spin-Hall conductivity dependence on system size and
disorder, we will apply the Kubo formula to large size sys-
tems for different values of the disorder potential W. The
numerical algorithm that underlies this calculation has been
introduced in Ref. 13 and represents an extension of the
particle-source method combined with tight-binding formal-
ism. This method was first applied to the calculation of
Green’s function, density of states, conductivity,]9 and Hall
conductivity.!® The main advantage is that one can evaluate
both the diagonal and off-diagonal parts of Green’s function
and their products with other quantum operators with low
computing effort. In principle, the computing effort for com-
puting Green’s function is O(N?) (Hamiltonian is expressed
as an N X N matrix), while within the present algorithm only
O(N) computational effort is required for the same calcula-
tion. Here, we briefly outline the main features of the algo-
rithm.

The central part of the method consists in solving the

time-dependent Schrodinger equation with a single-
frequency source term,
. df’t> i R —i(E+in)t
i = HIT0 + ) oexp ™ &0, )
where 7 is a finite small value and 6 is the step function. The
solution of the equation, with the initial condition f,t:O)
=0, becomes
t (t=1") (E+in) —1 (E+in)
T,t ——i| dare® t—t')| + o i(E+in i o l(E+in)t
j.0) fo 7 Evin_H"
et D). (5)

For sufficiently large amount of time, one can then write the
solution to the Schrodinger equation in terms of Green’s
function acting on the “source” |j), with the relative accuracy
S=e " as

7.7) = G(E +im)|jHe EH7T, (6)

leading to Green’s function operating on the ket |}),

G(E +in)|j) = lim ], T)e 7. (7)
T—o

The matrix element between states (i| and |}) is then obtained
as

{G(E+ imlj)= lim (lj.T). ®)
The matrix elements of a product including several Green’s
functions and other operators are obtained by choosing a new
initial state, such as |j')=AG(E+i7)|j) in Eq. (4), and repeat-
ing the same procedure.

To calculate the matrix elements of Green’s function at
many different energy values, one solves Eq. (4) simulta-
neously for a source term with multiple frequencies,
[/)(Z,e~"Erimt) 0(r). Following the algorithm outlined above,
one obtains as an approximate solution the ket,

035325-2



FINITE-SIZE EFFECTS IN A TWO-DIMENSIONAL...

G, (e /8T

FIG. 1. Spin-Hall conductivity as a function of Fermi energy in
units of e/87r for clean and disordered systems. System size is 30
X 30. Spin-orbit interaction strength is fixed to Vz=0.2¢. Average
was done over 2000 random frequencies.

7.T) = 2 G(E, + in)|jye” Erin T, 9)
1

The matrix element of Green’s function between the states (|
and |j) for a given energy is then easily obtained as

T

TN L
(h@H4w=MG@Hﬂmm=;ft#O
0

]7 tr>ei(E]r+i77)t’

(10)

where the terms involving transitions between different en-
ergies have been neglected with the relative accuracy o
=1/TAE, with AE as the minimum increment in the energies
E,.

To obtain the time dependent ket f; T), a direct numerical
integration of the Schrodinger equation can be performed, as
in the “leap-frog” algorithm.?® This is a second order, sym-
metrized differencing scheme, accurate up to (HAf)?. In this
form, Eq. (4) becomes

7ot + Af)y == 2iAtH|j; 1) + ] — Ar)
—2iAd]j)y >, e EF(7), (11)
!

with a time step A¢ determined by Ar=B/E,,,, where E,, . is
the absolute value of the extreme eigenvalue and B is a pa-
rameter whose value is less than 1 in order for the solution to
be stable.?!

Estimating the trace in Eq. (3) requires a suitable basis
set, such as the local orbital basis. It is more efficient, how-
ever, to choose a randomized version of this basis, described
by a ket |¢)=="_ |n)exp(~i¢h,), where |n) are the tight-
binding orbitals and ¢, are random numbers in the [0,277]
interval. For a given operator A, (¢|A|$) =X ,(n|A|n) within
the statistical errors of 1/N.

III. RESULTS AND DISCUSSION

In this section, we show the results of our computation
based on the previously outlined algorithm. First, we study
the Fermi energy dependence of the spin-Hall conductivity,
presented in Fig. 1. Random Fermi energies in the interval
[—4t,41] are considered and we average over 2000 samples
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FIG. 2. (Color online) Spin-Hall conductivity as a function of
system size in units of e/8 represented on a logarithmic scale.
Fermi energy is fixed to E=-3.0¢ and the spin precession length is
L,=16a, corresponding to Vp=0.2t. Mean free path ranges from
[=45a, for W=0.6 down to a few lattice constants when disorder
increases. Averages are done over 107 disorder samples and for each
sample, 200 initial state vectors are considered.

for each system size. For clean systems and for states in the
band, oy is close to 0.8 (in unit of e/87r), except at half
filling where, due to electron-hole symmetry considerations,
it vanishes. In the presence of disorder, the calculated value
of o,y decreases, our results reproducing very well the
known behavior previously obtained in the Landauer-
Biittiker formalism®!? or by the analytical Kubo formula.'?

The dependence of the spin-Hall conductivity on the sys-
tem size is shown in Fig. 2. One is interested in finding out
whether the variation of oy is dramatically changed by dis-
order and in determining the length scale at which this
change occurs. For this, the two relevant parameters are the
electronic mean free path / and the spin-precession length L.
In a quasiclassical approximation /=12%4v rao/ (27N(Er)W)?,
where v is the Fermi velocity and N(Ep) is the density of
states at the Fermi energy measured from the bottom of the
band. The spin-precession length is defined in terms of the
Rasba coupling constant by L,=mtay/ V.

The electronic mean free path is the length scale that
separates the ballistic from the diffusive regimes, with a bal-
listic behavior for system sizes smaller than / and diffusive
otherwise. We found that the crossover between these two
regimes is smooth, without any dramatic change in the over-
all behavior of the spin-Hall conductivity. The only observ-
able effect is a decrease of the spin-Hall conductivity when
disorder increases. For example, when W=0.6f, [=45a,
while for W=1.0¢, [= 16a,, whereas, as can be seen in Fig. 2,
the behavior of the spin-Hall conductivity remains un-
changed. At the same time, for system sizes below L, o,y
always monotonically increases, reaches a plateau between
L, and 2L, and then decreases for large system sizes, and is
expected to vanish in the thermodynamic limit, as in Refs. 14
and 15. The spin-precession length, therefore, is the charac-
teristic length scale at which a crossover between the differ-
ent regimes of the spin-Hall conductivity is expected. In the
semiclassical regime, a scaling analysis is appropriate. We
find that for a given Fermi energy, the size dependence of the
spin-Hall conductivity can be very well fitted with an expo-
nential function oy =exp(-L/§&), where £ is a characteristic
length that depends on the disorder strength, which is diver-
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FIG. 3. Disorder dependence of the characteristic length scale &
for Fermi energy Er=-3.0t and spin-orbit interaction strength Vp
=0.21.

gent in a clean system. In Fig. 3, we present the dependence
of this characteristic length as a function of disorder which
follows a power law &= &,(t/W)%>7 behavior, with the best
fit & =46a,. We remark again that the system size where o,y
starts to decrease is strongly conditioned by L, rather than /
as can be inferred from the similarities between the behav-
iors drawn for different values of the disorder for the same
L. In all our calculations, the decrease in the spin-Hall con-
ductivity starts for system sizes L=2L, regardless of the
value of the electronic mean free path.

PHYSICAL REVIEW B 75, 035325 (2007)

IV. CONCLUSIONS

In this work, we study the effect of the spin-precession
length scale and of the electronic mean free path on the the
spin-Hall conductivity in different regimes, by adapting the
particle-source algorithm to spin transport in systems with
SOI in the framework of the the tight-binding approximation.
The dependence of oy on the Fermi energy is also investi-
gated. Our main finding is that the spin precession length is
the critical length scale for the spin-Hall behavior. For a
system size smaller that L, the spin-Hall conductivity in-
creases even in the presence of disorder, reaches a plateau
between L, and 2L, and then, in the semiclassical limit
(when L>L,), decreases exponentially. In the thermody-
namic limit, o is zero for any amount of disorder present in
the system. We have also shown that the electronic mean free
path does not play a fundamental role in the spin-Hall con-
ductivity behavior.
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