101 research outputs found
Reduced gene expression of bikunin as a prognostic marker for renal cell carcinoma
Aim: Experimental and clinical studies showed that bikunin, a Kunitz-type protease inhibitor, found in urine and amniotic fluid has a role in spread of tumor cells by providing a significant reduction in the levels of urokinase-type plasminogen activator (uPA) and its specific receptor urokinase-type plasminogen activator receptor (uPAR). The aim of this study was to investigate expression of bikunin at the mRNA level and screen for mutations in exon sequence in renal cell carcinoma (RCC) tissues. Materials and Methods: Total RNA and DNA were extracted from paired normal and tumor tissues of total 50 RCC (11 papillary, 8 chromophobe, 26 clear cell, and 5 other types) patients (23 females, mean age: 53.55 ± 14.17; 27 males mean age: 62.1 ± 7.92). Bikunin mRNA levels were detected using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Mutational screening was performed by using single strand conformation polymorphism (SSCP) method and nucleotide sequence analysis. Results: There was a statistically significant decrease in the 25 (50%) of tumor tissues comparing to normal tissues in terms of mRNA levels of bikunin (Wilcoxon signed rank test, p = 0.0337). According to the classification based on subtypes of RCC; clear cell RCC samples displayed a reduced gene expression (p = 0.0148). Additionally, the patients with the age above 50 had low bikunin expression. The SNP rs80057939 spanning 4th exon of bikunin was detected in 13 tumor tissues. However, it was not statistically significant (p > 0.05). Conclusion: Decreased bikunin mRNA level in renal cells might be associated with poor prognosis of renal carcinoma. Therefore, gene constructs or exogenous administration of bikunin might be a potential adjuvant therapy for RCC treatment. Key Words: Bikunin, nucleotide sequence analysis, prognostic marker, renal cell carcinoma, semi-quantitative RT-PCR
Endothelial nitric oxide synthase gene polymorphisms associated with periodontal diseases in Turkish adults
Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained from the peripheral blood of 23 subjects with aggressive periodontitis (AgP), 26 with chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth (PD), clinical attachment loss (CAL), plaque index (PI) and gingival index (GI) were recorded as clinical parameters. We genotyped NOS3 polymorphisms using the PCR and/or PCR-RFLP method. Genotype frequencies differed significantly among periodontal diseases and controls for these polymorphisms. A significant association was detected between NOS3 +894 polymorphism and PD and CAL in the CP and AgP patient groups; whereas NOS VNTR analysis detected no associations with clinical parameters in theCP and AgP groups. However, a significant association was detected between the AA genotype and both PI and GI in patients with gingivitis; and a significant association was shown between the BB genotype and PI. The present study shows that two common polymorphisms of the NOS3 gene cluster are significantly associated with the occurrence of periodontal diseases
Expression profiling of SCN8A and NDUFC2 genes in colorectal carcinoma
The expression differences of SCN8A (which encodes type VIII alpha subunit of voltage gated sodium channel) and NDUFC2 (which encodes C2 subunit of Complex I enzyme in oxidative phosphorylation) genes were evaluated in paired colorectal cancer (CRC) tissues which was relied on our partial transcriptome analysis data in cancer cell lines. Materials and Methods: A total of 62 paired tissues of CRC patients (34 male, 28 female) were included in the study. The mRNA levels of SCN8A and NDUFC2 genes were determined by using real-time PCR (qRT-PCR and semiquantitative PCR). Results: SCN8A gene expression level was significantly lower in tumor tissues (p = 0.0128) and in the patients with the age below 45 years (p = 0.0049). There were also meaningful relationships between the gender, grade of CRC, tumor location, histopathological classification, and SCN8A expression. There was no NDUFC2 differential expression. However, the tumors taken from right colon had significantly lower NDUFC2 expression. Conclusion: Although the voltage gated sodium channels (VGSCs) and Complex I (CI) were associated to a number of diseases including different types of cancers, the different subunits of CI and individual members of VGSCs seem to be cancer type-specific in varying proportions. Key Words: colorectal carcinoma, SCN8A, NDUFC2, Complex I, voltage gated sodium channels, gene expression
In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH:ubiquinone oxidoreductase Ndufc2 subunit
Ndufc2, a subunit of the NADH:ubiquinone oxidoreductase, plays a key role in the assembly and activity of complex I within the mitochondrial OXPHOS chain. Its deficiency has been shown to be involved in diabetes, cancer and stroke. To improve our knowledge on the mechanisms underlying the increased disease risk due to Ndufc2 reduction, we performed the present in vitro study aimed at the fine characterization of the derangements in mitochondrial structure and function consequent to Ndufc2 deficiency. We found that both fibroblasts obtained from skin of heterozygous Ndufc2 knock-out rat model showed marked mitochondrial dysfunction and PBMC obtained from subjects homozygous for the TT genotype of the rs11237379/NDUFC2 variant, previously shown to associate with reduced gene expression, demonstrated increased generation of reactive oxygen species and mitochondrial damage. The latter was associated with increased oxidative stress and significant ultrastructural impairment of mitochondrial morphology with a loss of internal cristae. In both models the exposure to stress stimuli, such as high-NaCl concentration or LPS, exacerbated the mitochondrial damage and dysfunction. Resveratrol significantly counteracted the ROS generation. These findings provide additional insights on the role of an altered pattern of mitochondrial structure-function as a cause of human diseases. In particular, they contribute to underscore a potential genetic risk factor for cardiovascular diseases, including stroke
Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit
LAPAROSCOPIC TREATMENT OF DUODENAL-ULCER BY BILATERAL TRUNCAL VAGOTOMY AND ENDOSCOPIC BALLOON DILATATION
The low morbidity and early recovery associated with laparoscopic procedures have shown a new direction for many types of surgery. We performed a laparoscopic bilateral truncal vagotomy (BTV) with pyloric dilatation (PD) in 20 patients (11 men, 9 women, ranging in age from 32 to 56 years, with a mean age of 42 years). All patients had chronic duodenal ulcer diagnosed endoscopically, with a mean duration of symptoms of 2.6 years (range 2-8 years). The mean length of surgery was 55 min (range 45-90 min). The mean follow-up period was 16 months (range 3-25 months). In 1 patient, esophageal perforation occurred during the dissection of the left vagus nerve and was sutured laparoscopically. Acid secretion tests under basal conditions and pentagastrin stimulation preoperatively and 1 month postoperatively showed a decrease in basal acid output (BAO) of 76% and maximal acid output (MAO) of 84.2%. Endoscopy at the second and sixth postoperative month showed healing of the ulcer in 19 of 20 patients (95%). One patient had partial pyloric stenosis due to chronic duodenal ulcer before BTV and PD and developed complete pyloric stenosis after the surgery. Despite repeated pyloric balloon dilatation, he required an open drainage procedure (gas-troduodenostomy, Jaboulay). Three patients (15%) had postoperative diarrhea and responsed very well to medical treatment. The preliminary results showed that laparoscopic BTV with PD is a simple and effective procedure for the treatment of chronic duodenal ulcer
EXPRESSION PROFILING OF SCN8A AND NDUFC2 GENES IN COLORECTAL CARCINOMA
The expression differences of SCN8A (which encodes type VIII alpha subunit of voltage gated sodium channel) and NDUFC2 (which encodes C2 subunit of Complex I enzyme in oxidative phosphorylation) genes were evaluated in paired colorectal cancer (CRC) tissues which was relied on our partial transcriptome analysis data in cancer cell lines. Materials and Methods: A total of 62 paired tissues of CRC patients (34 male, 28 female) were included in the study. The mRNA levels of SCN8A and NDUFC2 genes were determined by using real-time PCR (qRT-PCR and semiquantitative PCR). Results: SCN8A gene expression level was significantly lower in tumor tissues (p = 0.0128) and in the patients with the age below 45 years (p = 0.0049). There were also meaningful relationships between the gender, grade of CRC, tumor location, histopathological classification, and SCN8A expression. There was no NDUFC2 differential expression. However, the tumors taken from right colon had significantly lower NDUFC2 expression. Conclusion: Although the voltage gated sodium channels (VGSCs) and Complex I (CI) were associated to a number of diseases including different types of cancers, the different subunits of CI and individual members of VGSCs seem to be cancer type-specific in varying proportions. Key Words: colorectal carcinoma, SCN8A, NDUFC2, Complex I, voltage gated sodium channels, gene expression
- …