94 research outputs found

    Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation

    Get PDF
    We investigate the propagation of uncertainties in the Aw-Rascle-Zhang model, which belongs to a class of second order traffic flow models described by a system of nonlinear hyperbolic equations. The stochastic quantities are expanded in terms of wavelet-based series expansions. Then, they are projected to obtain a deterministic system for the coefficients in the truncated series. Stochastic Galerkin formulations are presented in conservative form and for smooth solutions also in the corresponding non-conservative form. This allows to obtain stabilization results, when the system is relaxed to a first-order model. Computational tests illustrate the theoretical results

    Biomarkers in the prediction and management of acute coronary syndromes: current perspectives

    Get PDF
    Emanuele Gilardi, Paolo Iacomini, Davide Marsiliani, Guido De Marco, Marcello CovinoDepartment of Emergency Medicine, Catholic University of the Sacred Heart, A Gemelli Hospital, Rome, ItalyAbstract: A large branch of research has focused on the search for biomarkers for early detection of myocardial cell injuries. Most of these studies have evaluated patients presenting to the emergency department, underlining the need for an ideal biomarker for rapid recognition of acute coronary syndrome (ACS). In the recent past, diagnosis of ACS in the emergency department has been based mostly on clinical information and electrocardiographic findings, and markers of generic cell damage have been used to support clinical suspicion. Over the last few years, the role of markers has taken up increasingly more space in non-life-threatening conditions, confining the clinical examination of the patient to the mere waiting for results of blood tests after the electrocardiograph. Currently, the biomarkers most widely used for the diagnosis of ACS are cardiac troponins. Since their introduction into clinical practice, several generations of commercial cardiac troponin assays have been validated in analytical and clinical trials. Development of newer high-sensitivity assays seems to have improved the value of cardiac troponin as both a diagnostic and risk indicator. Several other biomarkers of ACS apart from cardiac troponin have been investigated, but most still require validation in further studies. Among these, pregnancy-associated plasma protein-A, ischemia-modified albumin, and heart-type fatty acid binding protein seem to be the most promising markers under investigation for their possible usefulness in the emergency department setting for early diagnosis of ACS. In conclusion, a multimarker approach could be the future of research. In this review, we highlight the old and new markers, especially the most studied and widely used in clinical practice in recent years, particularly those that can help the clinician to make a rapid and confident diagnosis of ACS.Keywords: biomarkers, acute coronary syndrome, myocardial infarction, emergency departmen

    Fabrication and Characterization of Quinary High Entropy-Ultra-High Temperature Diborides” Ceramics

    Get PDF
    Due to their inherently chemical complexity and their refractory nature, the obtainment of highly dense and single-phase High Entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5 and 98.2 %, respectively) are successfully produced by Spark Plasma Sintering (SPS) using powders prepared by Self-propagating High-temperature Synthesis (SHS). Although the latter technique does not lead to the complete conversion of initial precursors into the prescribed HE phases, such goal is fully reached after SPS (1950°C/20min/20 MPa). The three HE products show similar, even better in some cases, mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values are found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e. 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual po-rosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing Tantalum, displays lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) is relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material

    Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Get PDF
    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU

    Rhamnogalacturonan from Ilex paraguariensis: A potential adjuvant in sepsis treatment

    Get PDF
    AbstractThe present study evaluated the anti-inflammatory activity of a polysaccharide from maté, using a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP). A polysaccharide from maté (SPI) was obtained from aqueous extraction followed by fractionation, being identified as a rhamnogalacturonan with a main chain of →4)-6-OMe-α-d-GalpA-(1→ groups, interrupted by α-l-Rhap units, substituted by a type I arabinogalactan. SPI was tested against induced-polymicrobial sepsis, at doses of 3, 7 and 10mg/kg. Via oral administration, SPI prevented the late mortality of infected mice by a rate of 60% at 10mg/kg, in comparison with untreated mice Dexamethasone, used as positive control, was slightly less effective, with an overall survival rate of 16.7% of mice at the end of the observation period. SPI also affected neutrophil influx, avoiding its accumulation in lungs, and significantly decreased tissue expression of iNOS and COX-2. In this context, maté is a potential nutraceutical, and its polysaccharide a promising adjuvant for sepsis treatment, being consumed as tea-like beverages with no related adverse effects

    A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy

    Get PDF
    T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II–mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-γ−/− mice that are protected from CAV, T-bet−/− recipients develop markedly accelerated allograft rejection accompanied by early severe vascular inflammation and vasculopathy, and infiltration by predominantly IL-17–producing CD4 T cells. Concurrently, T-bet−/− mice exhibit a T helper type 1 (Th1)–deficient environment characterized by profound IFN-γ deficiency, a Th2 switch characterized by increased production of interleukin (IL) 4, IL-5, IL-10, and IL-13 cytokines, as well as increased production of the proinflammatory cytokines IL-6, IL-12p40, and IL-17. Neutralization of IL-17 inhibits accelerated allograft rejection and vasculopathy in T-bet−/− mice. Interestingly, CD4 but not CD8 T cell deficiency in T-bet−/− mice affords dramatic protection from vasculopathy and facilitates long-term graft acceptance. This is the first study establishing that in the absence of Th1-mediated alloimmune responses, CD4 Th17 cells mediate an aggressive proinflammatory response culminating in severe accelerated allograft rejection and vasculopathy. These results have important implications for the development of novel therapies to target this intractable problem in clinical solid organ transplantation

    Independent effects of sham laparotomy and anesthesia on hepatic microRNA expression in rats

    Get PDF
    Background: Studies on liver regeneration following partial hepatectomy (PH) have identified several microRNAs (miRNAs) that show a regulated expression pattern. These studies involve major surgery to access the liver, which is known to have intrinsic effects on hepatic gene expression and may also affect miRNA screening results. We performed two-third PH or sham laparotomy (SL) in Wistar rats to investigate the effect of both procedures on miRNA expression in liver tissue and corresponding plasma samples by microarray and qRT-PCR analyses. As control groups, non-treated rats and rats undergoing anesthesia only were used. Results: We found that 49 out of 323 miRNAs (15%) were significantly deregulated after PH in liver tissue 12 to 48 hours postoperatively (>20% change), while 45 miRNAs (14%) were deregulated following SL. Out of these miRNAs, 10 miRNAs were similarly deregulated after PH and SL, while one miRNA showed opposite regulation. In plasma, miRNA upregulation was observed for miR-133a and miR-133b following PH and SL, whereas miR-100 and miR-466c were similarly downregulated following anesthesia and surgery. Conclusions: We show that miRNAs are indeed regulated by sham laparotomy and anesthesia in rats. These findings illustrate the critical need for finding appropriate control groups in experimental surgery
    corecore