296 research outputs found

    Spin Dodecamer Formation in the Double-Exchange Spin Ice Model

    Full text link
    We investigated the double-exchange spin ice (DESI) model on a kagom\'e lattice by Monte Carlo simulation to study the effects of a geometrical frustration, and the mechanism that generates an ordered state in a metallic system. The DESI model on the kagom\'e lattice is a frustrated metallic system due to an effective ferromagnetic interaction between localized spins caused by the double-exchange (DE) mechanism and a uniaxial anisotropy for the localized spins. A dodecagonal spin cluster (named dodecamer), which consists of twelve localized spins, appears at low temperature when the number of particles per site n1/31/2n \simeq 1/3 \sim 1/2. Such a dodecamer order is driven by both the kinetic energy gain due to the DE mechanism and the geometrical frustration. We discuss that cluster orders, in general, may be a common feature in itinerant electron systems coupled with frustrated adiabatic fields.Comment: 9 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Understanding Paramagnetic Spin Correlations in the Spin-Liquid Pyrochlore Tb2Ti2O7

    Full text link
    Recent elastic and inelastic neutron scattering studies of the highly frustrated pyrochlore antiferromagnet Tb2Ti2O7 have shown some very intriguing features that cannot be modeled by the local classical Ising model, naively expected to describe this system at low temperatures. Using the random phase approximation to take into account fluctuations between the ground state doublet and the first excited doublet, we successfully describe the elastic neutron scattering pattern and dispersion relations in Tb2Ti2O7, semi-quantitatively consistent with experimental observations.Comment: revtex4, 4 pages, 1 Color+ 2 BW figure

    Anomalous Proximity Effect in Underdoped YBaCuO Josephson Junctions

    Full text link
    Josephson junctions were photogenerated in underdoped thin films of the YBa2_2Cu3_3O6+x_{6+x} family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and show that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result constrains the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.Comment: 11 pages, 4 figure

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins. Interactomes of WT and mutant ALS proteins were very similar except for OPTN and UBQLN2, in which mutations caused loss or gain of protein interactions. Several of the identified interactomes showed a high degree of overlap: shared binding partners of ATXN2, FUS and TDP-43 had roles in RNA metabolism; OPTN- and UBQLN2-interacting proteins were related to protein degradation and protein transport, and C9orf72 interactors function in mitochondria. To conf

    Inter-method reliability of the modified Rankin Scale in patients with subarachnoid hemorrhage

    Get PDF
    BACKGROUND AND OBJECTIVES: The modified Rankin Scale (mRS) is one of the most frequently used outcome measures in trials in patients with an aneurysmal subarachnoid hemorrhage (aSAH). The assessment method of the mRS is often not clearly described in trials, while the method used might influence the mRS score. The aim of this study is to evaluate the inter-method reliability of different assessment methods of the mRS. METHODS: This is a prospective, randomized, multicenter study with follow-up at 6 weeks and 6 months. Patients aged ≥ 18 years with aSAH were randomized to either a structured interview or a self-assessment of the mRS. Patients were seen by a physician who assigned an mRS score, followed by either the structured interview or the self-assessment. Inter-method reliability was assessed with the quadratic weighted kappa score and percentage of agreement. Assessment of feasibility of the self-assessment was done by a feasibility questionnaire. RESULTS: The quadratic weighted kappa was 0.60 between the assessment of the physician and structured interview and 0.56 between assessment of the physician and self-assessment. Percentage agreement was, respectively, 50.8 and 19.6%. The assessment of the mRS through a structured interview and by self-assessment resulted in systematically higher mRS scores than the mRS scored by the physician. Self-assessment of the mRS was proven feasible. DISCUSSION: The mRS scores obtained with different assessment methods differ significantly. The agreement between the scores is low, although the reliability between the assessment methods is good. This should be considered when using the mRS in clinical trials. TRIAL REGISTRATION: www.trialregister.nl; Unique identifier: NL7859. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-021-10880-4

    Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Rev. 3, 041303 (2016) and may be found at https://doi.org/10.1063/1.4963919.The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade
    corecore