40 research outputs found
DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use
2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project
We conducted a multicentre test-negative caseâ\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged â\u89¥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases
Secoiridoid content of Blackstonia perfoliata in vivo and in vitro
This study reports the analysis of secondary metabolites of gentiopicrin, swertiamarin, and sweroside in shoot and root cultures of yellow wort (Blackstonia perfoliata), which were initiated from seeds, grown on Murashige and Skoog (MS) medium. Shoot cultures of B. perfoliata were inoculated with suspension of Agrobacterium rhizogenes strain A4M70GUS and hairy roots appeared at the infected sites after 3 wk of inoculation. Tips of adventitious roots of B. perfoliata were grown on hormone-free MS medium and three clones of the transformed roots regenerated shoots spontaneously. Gentiopicrin, swertiamarin, and sweroside were detected in both roots and shoots of B. perfoliata in vitro and in vivo, but gentiopicrin was found to be the major compound. The concentration of growth regulator in the medium affected the production of secoiridoids in B. perfoliata in vitro, where the level of gentiopicrin was higher in plants grown in the presence of indole-3-butyric acid, but the presence of 6-benzylaminopurine was inhibitory to secoiridoid production
Cyclic [4]Rotaxanes Containing Two Parallel Porphyrinic Plates: Toward Switchable Molecular Receptors and Compressors.
: Twenty years ago, researchers considered the synthesis of simple rotaxanes a challenging task, but with the rapid development of this field, chemists now view these interlocking molecules as accessible synthetic targets. In a major advance for the field, researchers have developed transition metals or organic molecules as templating structures, making it easier to construct these molecular systems. In addition, chemists have found ways to introduce new functional groups, which have given these compounds new properties. Today researchers can also construct multirotaxanes consisting of several individual components, but the synthesis of the most complex structures remains challenging. This Account primarily discusses the cyclic [4]rotaxanes incorporating porphyrins that the Strasbourg group has synthesized and studied during the past few years. These cyclic [4]rotaxanes consist of two rigid rods threaded through the four rings of two molecules of a bis-macrocycle, and the synthetic strategy used for making them relies on the copper(I)-driven "gathering-and-threading" reaction. The formation of the threaded precursors was mostly quantitative, and the quadruple stoppering reaction leading to the target compound produces high yields because of the efficient copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click chemistry reaction. These rotaxanes behave as receptors for various ditopic guests. We prepared and studied two types of molecules: (i) a rigid compound whose copper(I) complex has a well-defined shape, with high selectivity for the guest geometry and (ii) a much more flexible [4]rotaxane host that could act as a distensible receptor. The rigid [4]rotaxane was crystallized, affording a spectacular X-ray structure that matched the expected chemical structure. In addition, metalation or demetalation of the rigid [4]rotaxane induces a drastic geometric rearrangement. The metal-free compound is flat without a binding pocket, while the copper-complexed species forms a rectangle-like structure. The removal of copper(I) also expels any complexed guest molecule, and this process is reversible, making the rigid porphyrinic [4]rotaxane a switchable receptor. The rigid [4]rotaxane was highly selective for short, ditopic guests in its copper(I)-complexed form, but the flexible copper(I)-complexed [4]rotaxane proved to be a versatile receptor. Its conformation can adjust to the size of the guest molecule similar to the induced fit mechanism that some enzymes employ with substrates
Identifying strategies to target the metabolic flexibility of tumours
Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes
Chronic use of inhaled corticosteroids in patients admitted for respiratory virus infections: a 6-year prospective multicenter study
International audienceInhaled corticosteroids (ICS) have been associated with increased risk of pneumonia. Their impact on respiratory virus infections is unclear. We performed a post-hoc analysis of the FLUVAC cohort, a multicenter prospective cohort study of adults hospitalized with influenza-like illness (ILI) during six consecutive influenza seasons (2012–2018). All patients were tested for respiratory virus infection by multiplex PCR on nasopharyngeal swabs and/or bronchoalveolar lavage. Risk factors were identified by logistic regression analysis. Among the 2658 patients included, 537 (20.2%) were treated with ICS before admission, of whom 282 (52.5%, 282/537) tested positive for at least one respiratory virus. Patients on ICS were more likely to test positive for non-influenza respiratory viruses (25.1% vs. 19.5%, P = 0.004), especially for adenovirus (aOR 2.36, 95% CI 1.18–4.58), and respiratory syncytial virus (aOR 2.08, 95% CI 1.39–3.09). Complications were reported in 55.9% of patients on ICS (300/537), primarily pneumonia (171/535, 32%). Among patients on chronic ICS who tested positive for respiratory virus, 14.2% (40/282) were admitted to intensive care unit, and in-hospital mortality rate was 2.8% (8/282). Chronic use of ICS is associated with an increased risk of adenovirus or RSV infections in patients admitted for ILI