226 research outputs found

    Stability boundaries of roll and square convection in binary fluid mixtures with positive separation ratio

    Full text link
    Rayleigh-B\'{e}nard convection in horizontal layers of binary fluid mixtures heated from below with realistic horizontal boundary conditions is studied theoretically using multi-mode Galerkin expansions. For positive separation ratios the main difference between the mixtures and pure fluids lies in the existence of stable three dimensional patterns near onset in a wide range of the parameter space. We evaluated the stationary solutions of roll, crossroll, and square convection and we determined the location of the stability boundaries for many parameter combinations thereby obtaining the Busse balloon for roll and square patterns.Comment: 19 pages + 15 figures, accepted by Journal of Fluid Mechanic

    Roll convection of binary fluid mixtures in porous media

    Full text link
    We investigate theoretically the nonlinear state of ideal straight rolls in the Rayleigh-B\'enard system of a fluid layer heated from below with a porous medium using a Galerkin method. Applying the Oberbeck-Boussinesq approximation, binary mixtures with positive separation ratio are studied and compared to one-component fluids. Our results for the structural properties of roll convection resemble qualitatively the situation in the Rayleigh--B\'enard system without porous medium except for the fact that the streamlines of binary mixtures are deformed in the so-called Soret regime. The deformation of the streamlines is explained by means of the Darcy equation which is used to describe the transport of momentum. In addition to the properties of the rolls, their stability against arbitrary infinitesimal perturbations is investigated. We compute stability balloons for the pure fluid case as well as for a wide parameter range of Lewis numbers and separation ratios which are typical for binary gas and fluid mixtures. The stability regions of rolls are found to be restricted by a crossroll, a zigzag and a new type of oscillatory instability mechanism, which can be related to the crossroll mechanism

    Faraday instability in a two-component Bose Einstein condensate

    Full text link
    Motivated by recent experiments on Faraday waves in Bose Einstein condensates (BEC) we investigate the dynamics of two component cigar shaped BEC subject to periodic modulation of the strength of the transverse confinement. It is shown that two coupled Mathieu equations govern the dynamics of the system. We found that the two component BEC in a phase mixed state is relatively more unstable towards pattern formation than the phase segregated state.Comment: 6 pages, 4 figure

    Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    Full text link
    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.

    Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment

    Full text link
    Convection structures in binary fluid mixtures are investigated for positive Soret coupling in the driving regime where solutal and thermal contributions to the buoyancy forces compete. Bifurcation properties of stable and unstable stationary square, roll, and crossroll (CR) structures and the oscillatory competition between rolls and squares are determined numerically as a function of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where the oscillation period grows in integer steps as n(2π)/(ω)n (2\pi)/(\omega) is found and elucidated to be an entrainment process.Comment: 7 pages, 4 figure

    Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening

    Full text link
    Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-H\"{u}ckel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.Comment: 6 pages, 3 figure

    Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications

    Full text link
    Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys. Rev. C; accepte
    corecore