3,526 research outputs found

    Інтерактивний контроль при формоутворенні багатогабаритних деталей

    Get PDF
    Physical phenomenon of warping (springing) can be observed as a technological heritage after large-dimensional articles forming or curing and consequent cooling of composite articles. This phenomenon can be seen as gaps between ready article contour and forming jig contour. Deviation degree of ready article surface from theoretical contour and article dimensions has to be controlled during manufacturing. Application of auxiliary controlling jig leads to expenses and labor-manufacturability increasing. Possibility of application forming jig with inserted jet gages is considered for articles shape controlling. Such gages and realization of acoustic methods allow to control not only final article shape but also geometry on intermediate stages of manufacturing.Після формоутворення багатогабаритних листових деталей з листових механічних заготовок або полімеризації і охолодження деталей з композитних матеріалів проявляється технологічна спадковість у вигляді викривлення (пружнення). Це спостерігається у вигляді неприлягання готової деталі до формозадаючої поверхні технологічного оснащення. При контролі якості формозміни необхідно вимірювати ступінь порушення форми і розмірів. Застосування контрольної оснастки дорого і складно. Розглянуто можливість використання для контролю формозадаючої оснастки з встановленими в ній повітряними струминними датчиками. Такі датчики і застосування акустичних методів дозволяють контролювати не тільки кінцеву форму заготовки, а й форму заготовки на попередваріантних етапах формозміни

    Vertebrate DNA in Fecal Samples from Bonobos and Gorillas: Evidence for Meat Consumption or Artefact?

    Get PDF
    Background: Deciphering the behavioral repertoire of great apes is a challenge for several reasons. First, due to their elusive behavior in dense forest environments, great ape populations are often difficult to observe. Second, members of the genus Pan are known to display a great variety in their behavioral repertoire; thus, observations from one population are not necessarily representative for other populations. For example, bonobos (Pan paniscus) are generally believed to consume almost no vertebrate prey. However, recent observations show that at least some bonobo populations may consume vertebrate prey more commonly than previously believed. We investigated the extent of their meat consumption using PCR amplification of vertebrate mitochondrial DNA (mtDNA) segments from DNA extracted from bonobo feces. As a control we also attempted PCR amplifications from gorilla feces, a species assumed to be strictly herbivorous. Principal Findings: We found evidence for consumption of a variety of mammalian species in about 16% of the samples investigated. Moreover, 40% of the positive DNA amplifications originated from arboreal monkeys. However, we also found duiker and monkey mtDNA in the gorilla feces, albeit in somewhat lower percentages. Notably, the DNA sequences isolated from the two ape species fit best to the species living in the respective regions. This result suggests that the sequences are of regional origin and do not represent laboratory contaminants. Conclusions: Our results allow at least three possible and mutually not exclusive conclusions. First, all results may represent contamination of the feces by vertebrate DNA from the local environment. Thus, studies investigating a species' diet from feces DNA may be unreliable due to the low copy number of DNA originating from diet items. Second, there is some inherent difference between the bonobo and gorilla feces, with only the later ones being contaminated. Third, similar to bonobos, for which the consumption of monkeys has only recently been documented, the gorilla population investigated (for which very little observational data are as yet available) may occasionally consume small vertebrates. Although the last explanation is speculative, it should not be discarded a-priori given that observational studies continue to unravel new behaviors in great ape species

    Full- & Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent-Magnet Synchronous Generator

    Get PDF
    Wind energy is an integral part of nowadays energy supply and one of the fastest growing sources of electricity in the world today. Accurate models for wind energy conversion systems (WECSs) are of key interest for the analysis and control design of present and future energy systems. Existing control-oriented WECSs models are subject to unstructured simplifications, which have not been discussed in literature so far. Thus, this technical note presents are thorough derivation of a physical state-space model for permanent magnet synchronous generator WECSs. The physical model considers all dynamic effects that significantly influence the system's power output, including the switching of the power electronics. Alternatively, the model is formulated in the (a,b,c)(a,b,c)- and (d,q)(d,q)-reference frame. Secondly, a complete control and operation management system for the wind regimes II and III and the transition between the regimes is presented. The control takes practical effects such as input saturation and integral windup into account. Thirdly, by a structured model reduction procedure, two state-space models of WECS with reduced complexity are derived: a non-switching model and a non-switching reduced-order model. The validity of the models is illustrated and compared through a numerical simulation study.Comment: 23 pages, 11 figure

    Propagation of gravitational waves in multimetric gravity

    Full text link
    We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.Comment: 21 pages, no figures, journal versio

    No-go theorem for bimetric gravity with positive and negative mass

    Full text link
    We argue that the most conservative geometric extension of Einstein gravity describing both positive and negative mass sources and observers is bimetric gravity and contains two copies of standard model matter which interact only gravitationally. Matter fields related to one of the metrics then appear dark from the point of view of an observer defined by the other metric, and so may provide a potential explanation for the dark universe. In this framework we consider the most general form of linearized field equations compatible with physically and mathematically well-motivated assumptions. Using gauge-invariant linear perturbation theory, we prove a no-go theorem ruling out all bimetric gravity theories that, in the Newtonian limit, lead to precisely opposite forces on positive and negative test masses.Comment: 19 pages, no figures, journal versio

    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity

    Full text link
    Recently we discussed a multimetric gravity theory containing several copies of standard model matter each of which couples to its own metric tensor. This construction contained dark matter sectors interacting repulsively with the visible matter sector, and was shown to lead to cosmological late-time acceleration. In order to test the theory with high-precision experiments within the solar system we here construct a simple extension of the parametrized post-Newtonian (PPN) formalism for multimetric gravitational backgrounds. We show that a simplified version of this extended formalism allows the computation of a subset of the PPN parameters from the linearized field equations. Applying the simplified formalism we find that the PPN parameters of our theory do not agree with the observed values, but we are able to improve the theory so that it becomes consistent with experiments of post-Newtonian gravity and still features its promising cosmological properties.Comment: 19 pages, no figures, journal versio

    Stiffness Optimized Multi-Robot Behavior Planning using Reduced Hessian Method

    Get PDF
    Stiffness is a critical weakness in robot-driven manufacturing. Following the idea of enhancing stiffness by physically coupling multiple robots, the cooperative behavior should be optimized. We present a reduced Hessian method to generate stiffness optimized placement and motion for coupled robots with given manufacturing processes. To improve efficiency the search space dimension of the optimization problem is reduced while the high-dimensional path and coupling constraints are satisfied in each iteration. By integrating a stiffness model in the optimization, cooperative behavior with stiffness enhancement is generated. The results are validated by experiments for both 7-axis and 6-axis robots with physical coupling

    MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma

    Get PDF
    BACKGROUND: Metastasis-associated in colon cancer 1 (MACC1) is an established marker for metastasis and tumor cell migration in a multitude of tumor entities, including glioblastoma (GBM). Nevertheless, the mechanism underlying the increased migratory capacity in GBM is not comprehensively explored. METHODS: We performed live cell and atomic force microscopy measurements to assess cell migration and mechanical properties of MACC1 overexpressing GBM cells. We quantified MACC1 dependent dynamics of 3D aggregate formation. For mechanistic studies we measured the expression of key adhesion molecules using qRT-PCR, and MACC1 dependent changes in short term adhesion to fibronectin and laminin. We then determined changes in sub-cellular distribution of integrins and actin in dependence of MACC1, but also in microtubule and intermediate filament organization. RESULTS: MACC1 increased the migratory speed and elastic modulus of GBM cells, but decreased cell-cell adhesion and inhibited the formation of 3D aggregates. These effects were not associated with altered mRNA expression of several key adhesion molecules or altered short-term affinity to laminin and fibronectin. MACC1 did neither change the organization of the microtubule nor intermediate filament cytoskeleton, but resulted in increased amounts of protrusive actin on laminin. CONCLUSION: MACC1 overexpression increases elastic modulus and migration and reduces adhesion of GBM cells thereby impeding 3D aggregate formation. The underlying molecular mechanism is independent on the organization of microtubules, intermediate filaments and several key adhesion molecules, but depends on adhesion to laminin. Thus, targeting re-organization of the cytoskeleton and cell motility via MACC1 may offer a treatment option to impede GBM spreading

    Climate change and agriculture : global and regional effects using an economic model of international trade

    Get PDF
    Empirical estimates of the economic welfare implications of the impact of climate change on global agricultural production are made. Agricultural yield changes resulting from climate scenarios associated with a doubling of atmospheric trace gases are used as an input into a global model of agricultural supply and demand. The agricultural production, price and economic welfare implications for 32 separate geographic regions are computed for 9 scenarios. The 9 scenarios reported are based on 3 different general circulation models (GCMs), estimated with and without the direct effects of carbon dioxide on plant growth, and with different levels of adaptation. The major conclusions are that economic welfare losses tend to be more severe in developing countries, major agricultural exporters can gain significantly if world agricultural prices rise, and the carbon dioxide fertilization effect substantially offsets losses dut to climate change alone. In one scenario, the combination of carbon dioxide fertilization and adaptation led to net global welfare increases. Policy implications of the potential changes and uncertainty in the magnitude, direction , and timing of change are discussed.Funded by the Joint Program on the Science and Policy of Global Change at M.I.T
    corecore