332 research outputs found

    Dark Production: A Significant Source of Oceanic COS

    Get PDF
    Carbonyl sulfide (COS) in air and dissolved in seawater was determined during a cruise in August 1999 in the Sargasso Sea in the northwest Atlantic Ocean. Dissolved concentrations at the sea surface displayed only a weak diel cycle with a mean of 8.6 ± 2.8 pmol dm−3 owing to low abundance of photochemical precursors and high temperatures causing rapid hydrolysis. Depth profiles measured over the oceanic mixed layer revealed significant vertical gradients of COS concentration with higher values at the surface, suggesting that the rate of photochemical production at the surface exceeds the rate of vertical mixing. The mean atmospheric mixing ratio was 486 ± 40 ppt, and calculated sea-air fluxes ranged from 0.03 to 0.8 g COS km−2 d−1. COS dark production, estimated from the predawn COS concentration at the surface and the hydrolysis constant, contributed significantly to the total amount of COS produced. A strong temperature dependence of the COS dark production rate q was found by comparing previously published values. The data further indicate an approximately first-order relationship between q and chromophoric dissolved organic matter (CDOM) absorbance at 350 nm, a350, which is used as a proxy for the CDOM content of the water but is likely to covary with other parameters, such as biological activity, that could also affect COS dark production. Together with known functions for COS hydrolysis and solubility, the parameterization of dark production as a function of temperature and a350 allows for the prediction of COS concentrations and saturation ratios as a function of physical and optical seawater properties in the absence of photoproduction. This is used to estimate a lower limit of 0.056 Tg COS yr−1 to the annual COS flux from the ocean to the atmosphere

    Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Get PDF
    Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT) the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClO<sub>x</sub> from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO<sub>2</sub> for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs) has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite observations by the MLS instrument also show no definite connection between chlorine activation and PSC formation. The inter -and intra-annual variability of vortex-average HCl and HNO<sub>3</sub> based on MLS observations is examined for the Arctic winters 2004/2005 to 2010/2011. These observations show that removal of HCl and HNO<sub>3</sub> from the gas-phase are not correlated. HNO<sub>3</sub> loss exhibits great inter-annual variability depending on prevailing temperatures while HCl loss is continuous through December without considerable inter- or intra-annual variability. Only the recovery of HCl in late winter depends on the level of denitrification. Hence, the occurrence of HNO<sub>3</sub> containing PSC particles does not seem to have a significant effect on the speed of initial chlorine activation on a vortex-wide scale

    Structure-Specific Fermentation of Galacto-Oligosaccharides, Isomalto-Oligosaccharides and Isomalto/Malto-Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses

    Get PDF
    SCOPE: Next to galacto-oligosaccharides (GOS), starch-derived isomalto-oligosaccharide preparation (IMO) and isomalto/malto-polysaccharides (IMMP) could potentially be used as prebiotics in infant formulas. However, it remains largely unknown how the specific molecular structures of these non-digestible carbohydrates (NDCs) impact fermentability and immune responses in infants. METHODS AND RESULTS: In vitro fermentation of GOS, IMO and IMMP using infant fecal inoculum of 2- and 8-week-old infants showed that only GOS and IMO were fermented by infant fecal microbiota. The degradation of GOS and IMO coincided with an increase in Bifidobacterium and production of acetate and lactate, which was more pronounced with GOS. Individual isomers with an (1↔1)-linkage or di-substituted reducing terminal glucose residue were more resistant to fermentation. GOS, IMO and IMMP fermentation digesta attenuated cytokine profiles in immature dendritic cells (DCs), but the extent was dependent on the infants age and NDC structure. CONCLUSION: The IMO preparation, containing reducing and non-reducing isomers, showed similar fermentation patterns as GOS in fecal microbiota of 2-week-old infants. Knowledge obtained on the substrate specificities of infant fecal microbiota and the subsequent regulatory effects of GOS, IMO and IMMP on DC responses might contribute to the design of tailored NDC mixtures for infants of different age groups. This article is protected by copyright. All rights reserved

    Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide

    Get PDF
    Carbonyl sulfide (COS), a trace gas in our atmosphere that leads to the formation of aerosols in the stratosphere, is taken up by terrestrial ecosystems. Quantifying the biosphere uptake of (COS) could provide a useful quantity to estimate Gross Primary Productivity. Some COS sources and sinks still contain large uncertainties, and several top down estimates of the COS budget point to an underestimation of sources especially in the tropics. We extended the inverse model TM5-4DVAR to assimilate MIPAS satellite data, in addition to NOAA surface data as used in a previous study. To resolve possible discrepancies among the two observational datasets, a bias correction scheme was implemented. A set of inversions is presented that explores the influence of the different measurement instruments and the settings of the prior fluxes. To evaluate the performance of the inverse system, the HIAPER Pole-to-Pole Observations (HIPPO) aircraft observations and NOAA airborne profiles are used. All inversions reduce the (COS) biosphere uptake from a prior value of 1053 GgS a-1 to much smaller values, depending on the inversion settings. These large adjustments of the biosphere uptake often turn parts of the Amazonia into a (COS) source. Only inversions that exclusively use MIPAS observations, or strongly reduce the prior errors on the biosphere flux maintain the Amazonia as a COS sink. Assimilating both NOAA surface data and MIPAS data requires a small bias correction for MIPAS data, mostly at higher latitudes, to correct for inconsistencies in the observational data and/or transport model errors. Analysis of the error reduction and posterior correlation between land and ocean fluxes indicates that co-assimilation of NOAA surface observations and MIPAS data better constrains the (COS) budget than assimilation of one individual dataset alone. Our inversions with bias corrections reduce the global biosphere uptake to respectively 570 and 687 GgS a-1, depending on the prior biosphere error. Over the Amazonia, these inversions reduce the biosphere uptake from roughly 300 to 100 GgS a-1, indicating a strongly overestimated prior uptake over the Amazonia. Although a recent study also reported reduced (COS) uptake over the Amazonia, we emphasise that a careful construction of prior fluxes and their associated errors remains important. For instance, an inversion that gives large freedom to adjust the anthropogenic and ocean fluxes of CS2, an important (COS) precursor, also closes the budget satisfactorily with much smaller adjustments to the biosphere. Thus, a better characterisation of biosphere and ocean fluxes by observations is urgently needed, especially over the data-poor tropics

    In vitro inhibition of porcine cytochrome P450 by 17β -estradiol and 17α-estradiol

    Get PDF
    Sexually mature pigs are known to possess high concentrations of testicular steroids, which have been shown to change the activities of cytochrome P450 in vitro. The aim of the present study was to evaluate the regulation of CYP1A and CYP2E1 activity by the steroids dihydrotestosterone (DHT), 3β-androstenol, 17β-estradiol and 17α-estradiol. Catalytic activities of 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD) were used as markers of CYP1A activities, while p-nitrophenol hydroxylase (PNPH) was used as a marker of CYP2E1 activities. Of the steroids tested, only 17β-estradiol and 17α-estradiol inhibited EROD and MROD activities. This inhibition was observed when a steroid concentration of 100 µM was used, while lower concentrations showed no inhibitory effect. PNPH activities were inhibited only by 100 µM of 17β-estradiol. The significance of these results in vivo is unknown because inhibition was only found when concentrations of estrogens higher than physiological levels were used. Nevertheless, the results provided further evidence on the important role of estrogens in regulation of porcine cytochrome P450 activities

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Get PDF
    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties
    corecore