50 research outputs found

    Patients Referred to a Norwegian Trauma Centre: effect of transfer distance on injury patterns, use of resources and outcomes

    Get PDF
    Background Triage and interhospital transfer are central to trauma systems. Few studies have addressed transferred trauma patients. This study investigated transfers of variable distances to OUH (Oslo University Hospital, Ullevål), one of the largest trauma centres in Europe. Methods Patients included in the OUH trauma registry from 2001 to 2008 were included in the study. Demographic, injury, management and outcome data were abstracted. Patients were grouped according to transfer distance: ≤20 km, 21-100 km and > 100 km. Results Of the 7.353 included patients, 5.803 were admitted directly, and 1.550 were transferred. The number of transfers per year increased, and there was no reduction in injury severity during the study period. Seventy-six per cent of the transferred patients were severely injured. With greater transfer distances, injury severity increased, and there were larger proportions of traffic injuries, polytrauma and hypotensive patients. With shorter distances, patients were older, and head injuries and injuries after falls were more common. The shorter transfers less often activated the trauma team: ≤20 km -34%; 21-100 km -51%; > 100 km -61%, compared to 92% of all directly admitted patients. The mortality for all transferred patients was 11%, but was unequally distributed according to transfer distance. Conclusion This study shows heterogeneous characteristics and high injury severity among interhospital transfers. The rate of trauma team assessment was low and should be further examined. The mortality differences should be interpreted with caution as patients were in different phases of management. The descriptive characteristics outlined may be employed in the development of triage protocols and transfer guidelines

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Impact of Fjord Geometry on Grounding Line Stability

    Get PDF
    Recent and past retreat of marine-terminating glaciers are broadly consistent with observed ocean warming, yet responses vary significantly within regions experiencing similar ocean conditions. We assess how fjord geometry modulates glacier response to a regional ocean warming on decadal to millennial time scales, by using an idealized, numerical model of fast-flowing glaciers including a crevasse-depth calving criterion. Our simulations show that, given identical climate forcing, grounding line responses can differ by tens of kilometers due to variations in channel width. We identify fjord mouths and embayments as vulnerable geometries, showing that glaciers in these fjords are prone to rapid, irreversible retreat, independent of the presence of a fjord sill. This irreversible retreat has relevance for the potential future recovery of marine ice sheets, if the current anthropogenic warming is reduced, or reversed, as well as for the response of marine ice sheets to past climate states; including the warm Bølling-Allerød interstadial, the Younger Dryas cold reversal and the Little Ice Age

    Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores

    Get PDF
    This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr−1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved

    Geometric controls of tidewater glacier dynamics

    No full text
    Retreat of marine outlet glaciers often initiates depletion of inland ice through dynamic adjustments of the upstream glacier. The local topography of a fjord may promote or inhibit such retreat, and therefore fjord geometry constitutes a critical control on ice sheet mass balance. To quantify the processes of ice–topography interactions and enhance the understanding of the dynamics involved, we analyze a multitude of topographic fjord settings and scenarios using the Ice-sheet and Sea-level System Model (ISSM). We systematically study glacier retreat through a variety of artificial fjord geometries and quantify the modeled dynamics directly in relation to topographic features. We find that retreat in an upstream-widening or upstream-deepening fjord does not necessarily promote retreat, as suggested by previous studies. Conversely, it may stabilize a glacier because converging ice flow towards a constriction enhances lateral and basal shear stress gradients. An upstream-narrowing or upstream-shoaling fjord, in turn, may promote retreat since fjord walls or bed provide little stability to the glacier where ice flow diverges. Furthermore, we identify distinct quantitative relationships directly linking grounding line discharge and retreat rate to fjord topography and transfer these results to a long-term study of the retreat of Jakobshavn Isbræ. These findings offer new perspectives on ice–topography interactions and give guidance to an ad hoc assessment of future topographically induced ice loss based on knowledge of the upstream fjord geometry

    Simulated retreat of Jakobshavn IsbrĂŚ since the Little Ice Age controlled by geometry

    Get PDF
    Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry

    Simulated retreat of Jakobshavn IsbrĂŚ since the Little Ice Age controlled by geometry

    Get PDF
    Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry

    Rapid retreat of a Scandinavian marine outlet glacier in response to warming at the last glacial termination

    Get PDF
    Marine outlet glaciers on Greenland are retreating, yet it is unclear if the recent fast retreat will persist, and how atmosphere and ocean warming will impact future retreat. We show how a marine outlet glacier in Hardangerfjorden retreated rapidly in response to the abrupt warming following the Younger Dryas cold period (approximately 11,600 years before present). This almost 1000 m deep fjord, with several sills at 300–500 m depth, hosted a 175 km long outlet glacier at the western rim of the Scandinavian Ice Sheet. We use a dynamic ice-flow model constrained by well-dated terminal and lateral moraines to simulate the reconstructed 500-year retreat of Hardangerfjorden glacier. The model includes an idealized oceanic and atmospheric forcing based on reconstructions, but excludes the surface mass balance-elevation feedback. Our simulations show a highly episodic retreat driven by surface melt and warming fjord waters, paced by the fjord bathymetry. Warming air and ocean temperatures by 4–5 °C during the period of retreat result in a 125-km retreat of Hardangerfjorden glacier in 500 years. Retreat rates throughout the deglaciation vary by an order of magnitude from 50 to 2500 m a−1, generally close to 200 m a−1, punctuated by brief events of swift retreat exceeding 500 m a−1, each event lasting a few decades. We show that the fastest retreat rates occur in regions of the bed with the largest retrograde slopes; ice shelf length and fjord water depth is less important. Our results have implications for modern glacial fjord settings similar to Hardangerfjorden, where high retreat rates have been observed. Our findings imply that increasing air temperatures and warming subsurface waters in Greenland fjords will continue to drive extensive retreat of marine outlet glaciers. However, the recent high retreat rates are not expected to be sustained for longer than a few decades due to constraints by the fjord bathymetry
    corecore