760 research outputs found

    Stabilization of a compact conformation of monomeric GroEL at low temperature by adenine nucleotides

    Get PDF
    AbstractE. coli GroEL chaperonin monomers, isolated after urea-induced dissociation of GroEL14, undergo cold denaturation below 5° C. Above 5°C, these monomers undergo MgATP-dependent self-assembly. We have demonstrated a conformational transition at 0°C induced by interaction of monomeric GroEL with adenine nucleotides. This conformation has a dramatically decreased Stokes radius and enhanced resistance to trypsin but it is slightly less compact than the conformation of monomers at 23°C in the absence of MgATP and it is not capable of spontaneous self-assembly. A second, temperature-dependent conformational change with a transition at about 5°C is required for GroEL to undergo oligomerization

    Structure of Cdc4p, a Contractile Ring Protein Essential for Cytokinesis in Schizosaccharomyces pombe

    Get PDF
    The Schizosaccharomyces pombe Cdc4 protein is required for the formation and function of the contractile ring, presumably acting as a myosin light chain. By using NMR spectroscopy, we demonstrate that purified Cdc4p is a monomeric protein with two structurally independent domains, each exhibiting a fold reminiscent of the EF-hand class of calcium-binding proteins. Although Cdc4p has one potentially functional calcium-binding site, it does not bind calcium in vitro. Three variants of Cdc4p containing single point mutations responsible for temperature-sensitive arrest of the cell cycle at cytokinesis (Gly-19 to Glu, Gly-82 to Asp, and Gly-107 to Ser) were also characterized by NMR and circular dichroism spectroscopy. In each case, the amino acid substitution only leads to small perturbations in the conformation of the protein. Furthermore, thermal unfolding studies indicate that, like wild-type Cdc4p, the three mutant forms are all extremely stable, remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. Therefore, the altered phenotype must arise directly from a disruption of the function of Cdc4p rather than indirectly through a disruption of its overall structure. Several mutant alleles of Cdc4p also show interallelic complementation in diploid cells. This phenomenon can be explained if Cdcp4 has more than one essential function or, alternatively, if two mutant proteins assemble to form a functional complex. Based on the structure of Cdc4p, possible models for interallelic complementation including interactions with partner proteins and the formation of a myosin complex with Cdc4p fulfilling the role of both an essential and regulatory light chain are proposed

    Expression of plant chaperonin-60 genes in Escherichia coli.

    Get PDF
    We have examined the expression in Escherichia coli of genes encoding a plant chloroplast molecular chaperone, chaperonin-60. Purified plant chaperonin-60 is distinct in that it contains two polypeptides, p60cpn-60 alpha and p60cpn-60 beta, which have divergent amino acid sequences (Hemmingsen, S. M., and Ellis, R. J. (1986) Plant Physiol. 80, 269-276; Martel, R., Cloney, L. P., Pelcher, L. E., and Hemmingsen, S. M. (1990) Gene (Amst.) 94, 181-187). The precise polypeptide composition(s) of the active tetradecameric specie(s) (cpn60(14)) has not been determined. Genes encoding the mature forms of the Brassica napus chaperonin polypeptides have been expressed separately and in combination in E. coli to produce three novel strains: alpha, beta, and alpha beta. The plant cpn60 polypeptides accumulated in soluble forms and to similar high levels in each. There was no conclusive evidence that p60cpn-60 alpha assembled into cpn60(14) species in alpha cells. In beta and alpha beta cells, the plant gene products assembled efficiently into cpn60(14) species. Thus, the assembly of p60cpn-60 alpha required the presence of p60cpn-60 beta, whereas the assembly of p60cpn-60 beta could occur in the absence of p60cpn-60 alpha. Significant proportions of the endogenous groEL polypeptides were not assembled into tetradecameric groEL14 in beta and alpha beta cells. Analysis of the tetradecameric species that did form indicated the presence of novel hybrid cpn6014 species that contained both plant and bacterial cpn60 polypeptides

    Assessment of plant chaperonin-60 gene function in Escherichia coli.

    Get PDF
    Brassica napus chaperonin-60 alpha and chaperonin-60 beta genes expressed separately and in combination produce three novel Escherichia coli strains: alpha, beta, and alpha beta. In beta and alpha beta cells, the plant gene products assemble efficiently into tetradecameric cpn60(14) species, including novel hybrids containing both bacterial and plant gene products. The levels of authentic groEL14 are reduced in these cells (Cloney, L. P., Wu, H. B., and Hemmingsen, S. M. (1992) J. Biol. Chem. 267, 23327-23332). The assembly of cyanobacterial ribulose-P2 carboxylase (rubisco) in E. coli requires the activities of the endogenous chaperonin proteins. Furthermore, the extent to which assembly occurs is limited by the normal levels of expression of the groE operon (Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) Nature 337, 44-47). We have now monitored the accumulation of cyanobacterial rubisco in E. coli alpha, beta, and alpha beta cells to assess the activity of the plant cpn60 gene products and effects on endogenous chaperonin functions. Expression of cpn-60 alpha alone did not enhance rubisco assembly, which is consistent with our previous observation that p60cpn-60 alpha required the presence of p60cpn-60 beta for assembly into cpn60(14) species. In contrast, expression of cpn-60 beta alone resulted in markedly enhanced rubisco assembly in cells that accumulated normal levels of both endogenous chaperonin polypeptides (groEL and groES). This demonstrates that assembled p60cpn-60 beta is functional as a chaperonin in E. coli. Co-expression of cpn-60 alpha and cpn-60 beta in cells with normal levels of expression of groES and groEL suppressed rubisco assembly. Increased expression of groES in cells in which cpn-60 alpha and cpn-60 beta were co-expressed relieved this suppression and resulted in enhanced rubisco assembly. Implications with respect to dependence of chloroplast cpn60 function on cpn10 are discussed

    Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe, interacts with a phosphatidylinositol 4-kinase.

    Get PDF
    The proposed function of Cdc4p, an essential contractile ring protein in Schizosaccharomyces pombe, is that of a myosin essential light chain. However, five conditionally lethal cdc4 alleles exhibit complementation in diploids. Such interallelic complementation is not readily explained if the sole function of Cdc4p is that of a myosin essential light chain. Complementation of cdc4 alleles could occur only if different mutant forms can assemble into an active oligomeric complex or if Cdc4p has more than one essential function. To search for other proteins that may interact with Cdc4p, we performed a two-hybrid screen and identified two such candidates: one similar to Saccharomyces cerevisiae Vps27p and the other a putative phosphatidylinositol (PI) 4-kinase. Binding of Cdc4p to the latter and to myosin heavy chain (Myo2p) was confirmed by immunosorbent assays. Deletion studies demonstrated interaction between the Cdc4p C-terminal domain and the PI 4-kinase C-terminal domain. Furthermore, interaction was abolished by the Cdc4p C-terminal domain point mutation, Gly107 to Ser. This allele also causes failure of cytokinesis. Ectopic expression of the PI 4-kinase C-terminal domain caused cytokinesis defects that were most extreme in cells carrying the G107S allele. We suggest that Cdc4p plays multiple roles in cytokinesis and that interaction with a PI 4-kinase may be important for contractile ring assembly and/or function

    Essential Role for Schizosaccharomyces pombe pik1 in Septation

    Get PDF
    Background: Schizosaccharomyces pombe pik1 encodes a phosphatidylinositol 4-kinase, reported to bind Cdc4, but no

    Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing.

    Get PDF
    The formation of reactive oxygen species (ROS) is linked to the pathogenesis of neurodegenerative diseases. Here we have investigated the effect of soluble and aggregated amyloid-β (Aβ) and α-synuclein (αS), associated with Alzheimer's and Parkinson's diseases, respectively, on the Cu(2+)-catalyzed formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aβ or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS-active metal ions in the aggregates or as a downstream consequence of the formation of the pathological amyloid structures.This work was supported by the Villum Foundation (J.T.P., L.H.), the Lundbeck Foundation (J.T.P., K.T.), the Agency for Science, Technology and Research, Singapore (S.W.C.), The Wellcome Trust (C.M.D.) and the Spanish Ministry of Economy and Competitiveness through the Ramon y Cajal ́ program (N.C.).This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b1357

    Occupational exposure and markers of genetic damage, systemic inflammation and lung function: a Danish cross-sectional study among air force personnel

    Get PDF
    Air force ground crew personnel are potentially exposed to fuels and lubricants, as raw materials, vapours and combustion exhaust emissions, during operation and maintenance of aircrafts. This study investigated exposure levels and biomarkers of effects for employees at a Danish air force military base. We enrolled self-reported healthy and non-smoking employees (n = 79) and grouped them by exposure based on job function, considered to be potentially exposed (aircraft engineers, crew chiefs, fuel operators and munition specialists) or as reference group with minimal occupational exposure (avionics and office workers). We measured exposure levels to polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) by silicone bands and skin wipes (PAHs only) as well as urinary excretion of PAH metabolites (OH-PAHs). Additionally, we assessed exposure levels of ultrafine particles (UFPs) in the breathing zone for specific job functions. As biomarkers of effect, we assessed lung function, plasma levels of acute phase inflammatory markers, and genetic damage levels in peripheral blood cells. Exposure levels of total PAHs, OPEs and OH-PAHs did not differ between exposure groups or job functions, with low correlations between PAHs in different matrices. Among the measured job functions, the UFP levels were higher for the crew chiefs. The exposure level of the PAH fluorene was significantly higher for the exposed group than the reference group (15.9 +/- 23.7 ng/g per 24 h vs 5.28 +/- 7.87 ng/g per 24 h, p = 0.007), as was the OPE triphenyl phosphate (305 +/- 606 vs 19.7 +/- 33.8 ng/g per 24 h, p = 0.011). The OPE tris(1, 3-dichlor-2-propyl)phosphate had a higher mean in the exposed group (60.7 +/- 135 ng/g per 24 h) compared to the reference group (8.89 +/- 15.7 ng/g per 24 h) but did not reach significance. No evidence of effects for biomarkers of systemic inflammation, genetic damage or lung function was found. Overall, our biomonitoring study show limited evidence of occupational exposure of air force ground crew personnel to UFPs, PAHs and OPEs. Furthermore, the OH-PAHs and the assessed biomarkers of early biological effects did not differ between exposed and reference groups
    corecore