31 research outputs found

    Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family

    Get PDF

    Prediction of nuclear proteins using SVM and HMM models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleus, a highly organized organelle, plays important role in cellular homeostasis. The nuclear proteins are crucial for chromosomal maintenance/segregation, gene expression, RNA processing/export, and many other processes. Several methods have been developed for predicting the nuclear proteins in the past. The aim of the present study is to develop a new method for predicting nuclear proteins with higher accuracy.</p> <p>Results</p> <p>All modules were trained and tested on a non-redundant dataset and evaluated using five-fold cross-validation technique. Firstly, Support Vector Machines (SVM) based modules have been developed using amino acid and dipeptide compositions and achieved a Mathews correlation coefficient (MCC) of 0.59 and 0.61 respectively. Secondly, we have developed SVM modules using split amino acid compositions (SAAC) and achieved the maximum MCC of 0.66. Thirdly, a hidden Markov model (HMM) based module/profile was developed for searching exclusively nuclear and non-nuclear domains in a protein. Finally, a hybrid module was developed by combining SVM module and HMM profile and achieved a MCC of 0.87 with an accuracy of 94.61%. This method performs better than the existing methods when evaluated on blind/independent datasets. Our method estimated 31.51%, 21.89%, 26.31%, 25.72% and 24.95% of the proteins as nuclear proteins in <it>Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster</it>, mouse and human proteomes respectively. Based on the above modules, we have developed a web server NpPred for predicting nuclear proteins <url>http://www.imtech.res.in/raghava/nppred/</url>.</p> <p>Conclusion</p> <p>This study describes a highly accurate method for predicting nuclear proteins. SVM module has been developed for the first time using SAAC for predicting nuclear proteins, where amino acid composition of N-terminus and the remaining protein were computed separately. In addition, our study is a first documentation where exclusively nuclear and non-nuclear domains have been identified and used for predicting nuclear proteins. The performance of the method improved further by combining both approaches together.</p

    Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p

    Loss of chloroplast protease SPPA function alters high light acclimation processes in Arabidopsis thaliana L. (Heynh.)

    Get PDF
    SPPA1 is a protease in the plastids of plants, located in non-appressed thylakoid regions. In this study, T-DNA insertion mutants of the single-copy SPPA1 gene in Arabidopsis thaliana (At1g73990) were examined. Mutation of SPPA1 had no effect on the growth and development of plants under moderate, non-stressful conditions. It also did not affect the quantum efficiency of photosynthesis as measured by dark-adapted Fv/Fm and light-adapted ΦPSII. Chloroplasts from sppA mutants were indistinguishable from the wild type. Loss of SPPA appears to affect photoprotective mechanisms during high light acclimation: mutant plants maintained a higher level of non-photochemical quenching of Photosystem II chlorophyll (NPQ) than the wild type, while wild-type plants accumulated more anthocyanin than the mutants. The quantum efficiency of Photosystem II was the same in all genotypes grown under low light, but was higher in wild type than mutants during high light acclimation. Further, the mutants retained the stress-related Early Light Inducible Protein (ELIP) longer than wild-type leaves during the early recovery period after acute high light plus cold treatment. These results suggest that SPPA1 may function during high light acclimation in the plastid, but is non-essential for growth and development under non-stress conditions

    In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

    Get PDF
    Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family

    Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family

    Full text link

    Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen

    No full text
    The apparatus of photosynthetic energy conversion in chloroplasts is quite well characterized with respect to structure and function. Light-driven electron transport in the thylakoid membrane is coupled to synthesis of ATP, used to drive energy-dependent metabolic processes in the stroma and the outer surface of the thylakoid membrane. The role of the inner (luminal) compartment of the thylakoids has, however, remained largely unknown although recent proteomic analyses have revealed the presence of up to 80 different proteins. Further, there are no reports concerning the presence of nucleotides in the thylakoid lumen. Here, we bring three lines of experimental evidence for nucleotide-dependent processes in this chloroplast compartment. (i) The thylakoid lumen contains a protein of 17.2 kDa, catalyzing the transfer of the γ-phosphate group from ATP to GDP, proposed to correspond to the nucleoside diphosphate kinase III. (ii) The 33-kDa subunit of photosystem II, bound to the luminal side of the thylakoid membrane and associated with the water-splitting process, can bind GTP. (iii) The thylakoid membrane contains a nucleotide transport system that is suggested to be associated with a 36.5-kDa nucleotide-binding protein. Our results imply, against current dogmas, that the thylakoid lumen contains nucleotides, thereby providing unexpected aspects on this chloroplast compartment from a metabolic and regulatory perspective and expanding its functional significance beyond a pure bioenergetic function
    corecore