464 research outputs found

    Zwischen Fortschrittsglauben und Furcht

    Get PDF

    Impact de pollutions ponctuelles sur les phytocénoses des rivières acides à neutres du Limousin (Massif Central, France)

    Get PDF
    L'impact des pollutions ponctuelles sur les phytocénoses aquatiques est étudié autour des rejets de 12 agglomérations dont 9 sont équipées d'une station d'épuration. Un échantillonnage systématique avec segmentation du cours d'eau autour de chaque rejet est réalisé. Sur chaque secteur, des relevés de végétation sont pratiqués au niveau de faciès d'écoulements homogènes dont on caractérise le milieu physique parallèlement à une analyse physicochimique de l'eau.L'ensemble des rejets provoque globalement une élévation de la conductivité, des teneurs en ammonium, nitrates et orthophosphates.Cela ce traduit par la régression de la phytocénose à Callitriche hamulata et Myriophyllum alterniflorum, par le développement de Ranunculus peltatus, Callitriche platycarpa et d'espèces cryptogames telles que Leptodyctium riparium, ou Melosira sp.Une Analyse en Composantes Principales menée sur l'ensemble des données permet d'opposer des phytocénoses propres aux secteurs amonts (Scapania undulata, Chiloscyphus polyanthus) à d'autres situées au niveau de rejets (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.,).Une Analyse Canonique de Correspondances valide le déterminisme de la qualité physicochimique de l'eau sur la végétation. La conductivité, les teneurs en ammonium, nitrates et orthophosphates deviennent prépondérants par rapport aux facteurs du milieu physique classiquement discriminants dans l'installation des phytocénoses dans les rivières limousines.The impact of located pollution on aquatic phytocénoses is studied around 12 cities discharge. Nine of them are fitted out purification plant.The sampling method is based on consecutive segments from upstream to downstream. On each sector, vegetation records are realized in homogeneous water runoff facies, which are characterized by physical factors as well as water value measures.The whole discharge leads globally to an increase of conductivity, ammonium amount, nitrates and orthophosphates. The consequence of that is a decrease of Callitriche hamulata and Myriophyllum alterniflorum phytocénoses, a development of Ranunculus peltatus, Callitriche platycarpa and cryptogams species like Leptodictyum riparium or Melosira sp.A Component Principal Analysis applied on data, distinguishes phytocénoses belonging to upstream sectors (Scapania undulata, Chiloscyphus polyanthus) from the ones of discharges (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.).A Canonical Correspondence Analysis validates the impact of physico-chemical water quality on vegetation. Conductivity, ammonium amount, nitrates and orthophosphates become more preponderant in comparison with physical environments usually discriminant for phytocénoses installation in Limousin rivers

    Observation of the spin-charge thermal isolation of ferromagnetic Ga_{0.94}Mn_{0.06}As by time-resolved magneto-optical measurement

    Full text link
    The dynamics of magnetization under femtosecond optical excitation is studied in a ferromagnetic semiconductor Ga_{0.94}Mn_{0.06}As with a time-resolved magneto-optical Kerr effect measurement with two color probe beams. The transient reflectivity change indicates the rapid rise of the carrier temperature and relaxation to a quasi-thermal equilibrium within 1 ps, while a very slow rise of the spin temperature of the order of 500ps is observed. This anomalous behavior originates from the thermal isolation between the charge and spin systems due to the spin polarization of carriers (holes) contributing to ferromagnetism. This constitutes experimental proof of the half-metallic nature of ferromagnetic Ga_{0.94}Mn_{0.06}As arising from double exchange type mechanism originates from the d-band character of holes

    Theory of Magnetic Anisotropy in III_{1-x}Mn_{x}V Ferromagnets

    Full text link
    We present a theory of magnetic anisotropy in III1xMnxV{\rm III}_{1-x}{\rm Mn}_{x}{\rm V} diluted magnetic semiconductors with carrier-induced ferromagnetism. The theory is based on four and six band envelope functions models for the valence band holes and a mean-field treatment of their exchange interactions with Mn++{\rm Mn}^{++} ions. We find that easy-axis reorientations can occur as a function of temperature, carrier density pp, and strain. The magnetic anisotropy in strain-free samples is predicted to have a p5/3p^{5/3} hole-density dependence at small pp, a p1p^{-1} dependence at large pp, and remarkably large values at intermediate densities. An explicit expression, valid at small pp, is given for the uniaxial contribution to the magnetic anisotropy due to unrelaxed epitaxial growth lattice-matching strains. Results of our numerical simulations are in agreement with magnetic anisotropy measurements on samples with both compressive and tensile strains. We predict that decreasing the hole density in current samples will lower the ferromagnetic transition temperature, but will increase the magnetic anisotropy energy and the coercivity.Comment: 15 pages, 15 figure

    Stability of trions in strongly spin-polarized two-dimensional electron gases

    Full text link
    Low-temperature magneto-photoluminescence studies of negatively charged excitons (X- trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se quantum wells over a wide range of Fermi energy and spin-splitting. The magnetic composition is chosen such that these magnetic two-dimensional electron gases (2DEGs) are highly spin-polarized even at low magnetic fields, throughout the entire range of electron densities studied (5e10 to 6.5e11 cm^-2). This spin polarization has a pronounced effect on the formation and energy of X-, with the striking result that the trion ionization energy (the energy separating X- from the neutral exciton) follows the temperature- and magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X- at the nu=1 quantum limit, beyond which a new PL peak appears and persists to 60 Tesla, suggesting the formation of spin-triplet charged excitons.Comment: 5 pages (RevTex), 4 embedded EPS figs. Submitted to PRB-R

    Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As

    Full text link
    We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host semiconductor band structure, described by a six-band Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band model.Comment: 9 pages, 4 figure

    A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors

    Get PDF
    A density functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ\delta-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie Temperature by additional confinement of the holes in a δ\delta-doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure

    Light and electric field control of ferromagnetism in magnetic quantum structures

    Full text link
    A strong influence of illumination and electric bias on the Curie temperature and saturation value of the magnetization is demonstrated for semiconductor structures containing a modulation-doped p-type Cd0.96Mn0.04Te quantum well placed in various built-in electric fields. It is shown that both light beam and bias voltage generate an isothermal and reversible cross-over between the paramagnetic and ferromagnetic phases, in the way that is predetermined by the structure design. The observed behavior is in quantitative agreement with the expectations for systems, in which ferromagnetic interactions are mediated by the weakly disordered two-dimensional hole liquid.Comment: 4 pages and 3 figure

    Interlayer coupling in ferromagnetic semiconductor superlattices

    Full text link
    We develop a mean-field theory of carrier-induced ferromagnetism in diluted magnetic semiconductors. Our approach represents an improvement over standard RKKY model allowing spatial inhomogeneity of the system, free-carrier spin polarization, finite temperature, and free-carrier exchange and correlation to be accounted for self-consistently. As an example, we calculate the electronic structure of a Mnx_xGa1x_{1-x}As/GaAs superlattice with alternating ferromagnetic and paramagnetic layers and demonstrate the possibility of semiconductor magnetoresistance systems with designed properties.Comment: 4 pages, 4 figure
    corecore