1,111 research outputs found

    The smallest graph whose group is cyclic

    Get PDF

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Traffic by multiple species of molecular motors

    Full text link
    We study the traffic of two types of molecular motors using the two-species symmetric simple exclusion process (ASEP) with periodic boundary conditions and with attachment and detachment of particles. We determine characteristic properties such as motor densities and currents by simulations and analytical calculations. For motors with different unbinding probabilities, mean field theory gives the correct bound density and total current of the motors, as shown by numerical simulations. For motors differing in their stepping probabilities, the particle-hole symmetry of the current-density relationship is broken and mean field theory fails drastically. The total motor current exhibits exponential finite-size scaling, which we use to extrapolate the total current to the thermodynamic limit. Finally, we also study the motion of a single motor in the background of many non-moving motors.Comment: 23 pages, 6 figures, late

    Organization of complex networks without multiple connections

    Full text link
    We find a new structural feature of equilibrium complex random networks without multiple and self-connections. We show that if the number of connections is sufficiently high, these networks contain a core of highly interconnected vertices. The number of vertices in this core varies in the range between constN1/2const N^{1/2} and constN2/3const N^{2/3}, where NN is the number of vertices in a network. At the birth point of the core, we obtain the size-dependent cut-off of the distribution of the number of connections and find that its position differs from earlier estimates.Comment: 5 pages, 2 figure

    The number of ways to label a structure

    Full text link
    It has been observed that the number of different ways in which a graph with p points can be labelled is p ! divided by the number of symmetries, and that this holds regardless of the species of structure at hand. In this note, a simple group-theoretic proof is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45724/1/11336_2005_Article_BF02289423.pd

    Entanglement in Valence-Bond-Solid States

    Full text link
    This article reviews the quantum entanglement in Valence-Bond-Solid (VBS) states defined on a lattice or a graph. The subject is presented in a self-contained and pedagogical way. The VBS state was first introduced in the celebrated paper by I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki (abbreviation AKLT is widely used). It became essential in condensed matter physics and quantum information (measurement-based quantum computation). Many publications have been devoted to the subject. Recently entanglement was studied in the VBS state. In this review we start with the definition of a general AKLT spin chain and the construction of VBS ground state. In order to study entanglement, a block subsystem is introduced and described by the density matrix. Density matrices of 1-dimensional models are diagonalized and the entanglement entropies (the von Neumann entropy and Renyi entropy) are calculated. In the large block limit, the entropies also approach finite limits. Study of the spectrum of the density matrix led to the discovery that the density matrix is proportional to a projector.Comment: Published version, 80 pages, 8 figures; references update

    Meeting the Expectations of Your Heritage Culture: Links between Attachment Style, Intragroup Marginalisation, and Psychological Adjustment

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Do insecurely-attached individuals perceive greater rejection from their heritage culture? Few studies have examined the antecedents and outcomes of this perceived rejection – termed intragroup marginalisation – in spite of its implications for the adjustment of cultural migrants to the mainstream culture. The present study investigated whether anxious and avoidant attachment orientations among cultural migrants were associated with greater intragroup marginalisation and, in turn, with lower subjective well-being and flourishing, and higher acculturative stress. Anxious attachment was associated with heightened intragroup marginalisation from friends and, in turn, with increased acculturative stress; anxious attachment was also associated with increased intragroup marginalisation from family. Avoidant attachment was linked with increased intragroup marginalisation from family and, in turn, with decreased subjective well-being

    L\'evy-type diffusion on one-dimensional directed Cantor Graphs

    Full text link
    L\'evy-type walks with correlated jumps, induced by the topology of the medium, are studied on a class of one-dimensional deterministic graphs built from generalized Cantor and Smith-Volterra-Cantor sets. The particle performs a standard random walk on the sets but is also allowed to move ballistically throughout the empty regions. Using scaling relations and the mapping onto the electric network problem, we obtain the exact values of the scaling exponents for the asymptotic return probability, the resistivity and the mean square displacement as a function of the topological parameters of the sets. Interestingly, the systems undergoes a transition from superdiffusive to diffusive behavior as a function of the filling of the fractal. The deterministic topology also allows us to discuss the importance of the choice of the initial condition. In particular, we demonstrate that local and average measurements can display different asymptotic behavior. The analytic results are compared with the numerical solution of the master equation of the process.Comment: 9 pages, 9 figure

    Cutpoints in the conjunction of two graphs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47480/1/13_2005_Article_BF01226435.pd
    corecore