82 research outputs found

    La cédraie de Barouk (Liban). Compte rendu de voyage d'un groupe d'étude de l'ENGREF

    Get PDF
    Décrit la forêt communale de Barouk, qui s'est bien développée naturellement grâce à une simple protection contre le pâturage caprin, et à des reboisements. L'article propose un plan d'intervention qui repose sur une analyse préliminaire englobant les aspects socio-économiques, photodynamiques et paysagers

    The effect of glycol side chains on the assembly and microstructure of conjugated polymers

    Get PDF
    Conjugated polymers with glycol-based chains, are emerging as a material class with promising applications as organic mixed ionic-electronic conductors, particularly in bioelectronics and thermoelectrics. However, little is still known about their microstructure and the role of the side chains in determining intermolecular interactions and polymer packing. Here, we use the combination of electrospray deposition and scanning tunneling microscopy to determine the microstructure of prototypical glycolated conjugated polymers (pgBTTT and p(g2T-TT)) with submonomer resolution. Molecular dynamics simulations of the same surface-adsorbed polymers exhibit an excellent agreement with the experimental images, allowing us to extend the characterization of the polymers to the atomic scale. Our results prove that, similarly to their alkylated counterparts, glycolated polymers assemble through interdigitation of their side chains, although significant differences are found in their conformation and interaction patterns. A model is proposed that identifies the driving force for the polymer assembly in the tendency of the side chains to adopt the conformation of their free analogues, i.e., polyethylene and polyethylene glycol, for alkyl or ethylene glycol side chains, respectively. For both classes of polymers, it is also demonstrated that the backbone conformation is determined to a higher degree by the interaction between the side chains rather than by the backbone torsional potential energy. The generalization of these findings from two-dimensional (2D) monolayers to three-dimensional thin films is discussed, together with the opportunity to use this type of 2D study to gain so far inaccessible, subnm-scale information on the microstructure of conjugated polymers

    The entangled triplet pair state in acene and heteroacene materials

    Get PDF
    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.The authors thank the G8 Research Councils Initiative on Multilateral Research Funding (EPSRC EP/K025651; US National Science Foundation CMM1-1255494; Japanese Society for the Promotion of Science), JC thanks the University of Sheffield for a VC fellowship. AJM and SLB thank EPSRC (EP/M01083X and EP/M025330). The work in Mons is supported by BELSPO through the PAI P6/27 Functional Supramolecular Systems project and by the Belgian National Fund for Scientific Research FNRS/F.R.S. DB is a Research Director of FNRS

    Endothelial Progenitor Cells (EPCs) as Gene Carrier System for Rat Model of Human Glioma

    Get PDF
    Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1) intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS) to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2) whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities.Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m) in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS). Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors.EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for glioma therapy as well as imaging probes

    ATP release during cell swelling activates a Ca2+-dependent Cl - Current by autocrine mechanism in mouse hippocampal microglia

    Get PDF
    Microglia cells, resident immune cells of the brain, survey brain parenchyma by dynamically extending and retracting their processes. Cl- channels, activated in the cellular response to stretch/swelling, take part in several functions deeply connected with microglia physiology, including cell shape changes, proliferation, differentiation and migration. However, the molecular identity and functional properties of these Cl- channels are largely unknown. We investigated the properties of swelling-activated currents in microglial from acute hippocampal slices of Cx3cr1+/GFP mice by whole-cell patch-clamp and imaging techniques. The exposure of cells to a mild hypotonic medium, caused an outward rectifying current, developing in 5-10 minutes and reverting upon stimulus washout. This current, required for microglia ability to extend processes towards a damage signal, was carried mainly by Cl- ions and dependent on intracellular Ca2+. Moreover, it involved swelling-induced ATP release. We identified a purine-dependent mechanism, likely constituting an amplification pathway of current activation: under hypotonic conditions, ATP release triggered the Ca2+-dependent activation of anionic channels by autocrine purine receptors stimulation. Our study on native microglia describes for the first time the functional properties of stretch/swelling-activated currents, representing a key element in microglia ability to monitor the brain parenchyma

    Ca2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMP−/− Mice

    Get PDF
    The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown.We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM).Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions
    • …
    corecore