103 research outputs found
Antioxidant properties of essential oils from Mentha species evidenced by electrochemical methods
Antinociceptive activity of Mentha piperita leaf aqueous extract in mice
Mentha piperita L. (Labiatae) is an herbaceous plant, used in folk medicine for the treatment of several medical disorders.In the present study, the aqueous extract of Mentha piperita leaf, at the i.p doses 200 and 400 mg/kg, showed significant analgesic effects against both acetic acid-induced writhing and hot plate-induced thermal stimulation in mice, with protection values of 51.79% and 20.21% respectively. On the contrary, the Mentha piperita leaf aqueous extract did not exhibit anti-inflammatory activity against carrageenan induced paw oedema.These findings indicate that Mentha piperita has a potential analgesic effect that may possibly have mediated centrally and peripherally, as well as providing a pharmacological evidence for its traditional use as a pain reliever
Chemical composition and antibacterial activity of essential oils from the medicinal plant Mentha cervina L. grown in Portugal
Mentha cervina is a medicinal plant traditionally
used in Portugal in folk medicine, in different gastric
disorders and inflammations of the respiratory tract. In
order to validate those traditional uses, M. cervina essential
oils (EOs) were characterized by GC and GC–MS and their
antimicrobial activity was tested against 23 bacterial strains
(including multiresistant strains). The EOs were dominated
by the monoterpenes pulegone (52–75%), isomenthone
(8–24%), limonene (4–6%), and menthone (1–2%). The
antibacterial activity of these EOs was compared to that of
the main components standards. The most effective antibacterial
activity was expressed by the EOs against the
Gram-negative bacteria, Escherichia coli and Acinetobacter
baumanni, with MIC values of 1 mg/ml. The EOs complex mixtures were more active than the individual
aromatic components supporting the hypothesis that the
EOs antibacterial activity is a function of the synergistic
effect of their different aromatic components. These results
show the potential role of M. cervina EOs as antibacterial
agents and validate the traditional use of this plant
Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization
Antimutagenic compounds and their possible mechanisms of action
Mutagenicity refers to the induction of permanent changes in the DNA sequence of an organism, which may result in a heritable change in the characteristics of living systems. Antimutagenic agents are able to counteract the effects of mutagens. This group of agents includes both natural and synthetic compounds. Based on their mechanism of action among antimutagens, several classes of compounds may be distinguished. These are compounds with antioxidant activity; compounds that inhibit the activation of mutagens; blocking agents; as well as compounds characterized with several modes of action. It was reported previously that several antitumor compounds act through the antimutagenic mechanism. Hence, searching for antimutagenic compounds represents a rapidly expanding field of cancer research. It may be observed that, in recent years, many publications were focused on the screening of both natural and synthetic compounds for their beneficial muta/antimutagenicity profile. Thus, the present review attempts to give a brief outline on substances presenting antimutagenic potency and their possible mechanism of action. Additionally, in the present paper, a screening strategy for mutagenicity testing was presented and the characteristics of the most widely used antimutagenicity assays were described
Investigation of In vitro Mineral Forming Bacterial Isolates from Supragingival Calculus
Aim: Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria responsible for direct calcification from supragingival calculus samples. Materials and Methods: The study was conducted using supragingival calculus samples from patients with periodontal disease, which was required as part of conventional treatment. Isolations were performed by sampling the supragingival calculus with buffer and inoculating the samples on media on which crystallization could be observed. The 16S recombinant DNA of the obtained pure cultures was then amplified and sequenced. Results: A few bacterial species that have not previously been associated with mineralization or identified on bacterial plaque or calculus were detected. The bacteria that caused mineralization an aerobic environment are identified as Neisseria flava, Aggregatibacter segnis, Streptococcus tigurinus, and Morococcus cerebrosus. Conclusion: These findings proved that bacteria potentially play a role in the etiopathology of supragingival calculus. The association between the effects of the identified bacteria on periodontal diseases and calculus formation requires further studies.Keywords: Bacteria, biomineralization, supragingival dental calculu
Investigation of in vitro mineral forming bacterial isolates from supragingival calculus
Aim: Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria responsible for direct calcification from supragingival calculus samples. Materials and Methods: The study was conducted using supragingival calculus samples from patients with periodontal disease, which was required as part of conventional treatment. Isolations were performed by sampling the supragingival calculus with buffer and inoculating the samples on media on which crystallization could be observed. The 16S recombinant DNA of the obtained pure cultures was then amplified and sequenced. Results: A few bacterial species that have not previously been associated with mineralization or identified on bacterial plaque or calculus were detected. The bacteria that caused mineralization an aerobic environment are identified as Neisseria flava, Aggregatibacter segnis, Streptococcus tigurinus, and Morococcus cerebrosus. Conclusion: These findings proved that bacteria potentially play a role in the etiopathology of supragingival calculus. The association between the effects of the identified bacteria on periodontal diseases and calculus formation requires further studies
Protective properties of five newly synthesized cyclic compounds against sodium azide and N
Molecular characterization of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum-Turkey
The fixation of N2 by legumes plays key role in agricultural sustainability. Moreover, the further assessment of rhizobial genetic diversity is contributing both to the worldwide knowledge of biodiversity of soil microorganisms and to the usefulness of rhizobial collections, and it is developing long-term strategies to increase contributions of legume-fixed to agricultural productivity. In the last decades, the use of molecular techniques has been contributed greatly to enhance the knowledge of rhizobial diversity. This study was conducted to determine the phenotypic and genotypic differences in Rhizobium leguminosarum subsp. ciceri strains isolated from perennial wild chickpeas (Cicer anatolicum) from high altitudes (2000-2500 m) in mountains of Erzurum, Eastern Anatolia, Turkey. In this study, rep-PCR (ERIC-, REP- and BOX-PCR) fingerprinting methods were used for the genotypic characterization and phylogenetic analysis of Rhizobium leguminosarum subsp. ciceri strains isolated from perennial wild chickpeas. The results showed a high intraspecies diversity among the strains in terms of rep-PCR (ERIC-, REP- and BOX-PCR) profiles. Copyright © 2009 Bucharest University
- …
