2,601 research outputs found

    Theoretical power spectra of mixed modes in low mass red giant stars

    Full text link
    CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes

    Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    Full text link
    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.Comment: Presented at IPAC'14 - THPME08

    Micro Balloon Actuators for Aerodynamic Control

    Get PDF
    A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been characterized in a wind tunnel to assess their suitability as aerodynamic control surfaces and flight-tested on a jet fighter to assess their resistance to varied temperatures and pressures at high velocity

    Angular momentum redistribution by mixed modes in evolved low-mass stars. I. Theoretical formalism

    Get PDF
    Seismic observations by the space-borne mission \emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude, and predict a drastic spin-up of red giant cores instead. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the Transformed Eulerian Mean (TEM) formalism, introduced by Andrews \& McIntyre (1978), that allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a 1.3M1.3 M_\odot benchmark model, representative of observed CoRoT and \emph{Kepler} oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper.Comment: Accepted in A&A, 11 pages, and 6 figure

    Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    Get PDF
    The detection of mixed modes in subgiants and red giants by the CoRoT and \emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 MM_{\odot} at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure

    Protection of Works of Art From Atmospheric Ozone

    Get PDF
    Assesses the colorfastness of organic colorants and watercolor pigments tested in atmospheric ozone. A summary of a full report of the Environmental Quality Laboratory, California Institute of Technology, Pasadena
    corecore