172 research outputs found

    Fermilab E791

    Get PDF
    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billion events were recorded through a loose transverse energy trigger and written to 8mm tape in the the 1991-92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysed on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.Comment: 4 pages, 1 figure, LaTe

    Coating mechanisms of single-walled carbon nanotube by linear polyether surfactants: insights from computer simulations

    Get PDF
    The noncovalent coating of carbon-based nanomaterials, such as carbon nanotubes, has important applications in nanotechnology and nanomedicine. The molecular modeling of this process can clarify its mechanism and provide a tool for the design of novel materials. In this paper, the coating mechanism of single-walled carbon nanotubes (SWCNT) in aqueous solutions by 1,2-dimethoxyethane oxide (DME), 1,2-dimethoxypropane oxide (DMP), poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) pentamers, and L64 triblock copolymer chains have been studied using molecular dynamics (MD) simulations. The results suggest a preferential binding to the SWCNT surface of the DMP molecules with respect to DME mainly driven by their difference in hydrophobicity. For the longer pentamers, it depends by the chain conformation. PPO isomers with radius of gyration larger than PEO pentamers bind more tightly than those with more compact conformation. In the case of the L64 triblock copolymer, the coating of the SWCNT surface produces a shell of PPO blocks with the PEO chains protruding into bulk water as expected from the so-called nonwrapping binding mechanism of SWCNT. In addition, the polymer coating, in qualitative agreement with experimental evidence on the poor capability of the L64 to disperse SWCNT, do not prevent the formation of CNT aggregates

    Search for the Flavor-Changing Neutral-Current Decays D+→π+ÎŒ+Ό−D^+\to \pi^+ \mu^+ \mu^- and D+→π+e+e−D^+\to \pi^+ e^+ e^-

    Full text link
    We report the results of a search for the flavor-changing neutral-current decays D+→π+ÎŒ+Ό−D^+\rightarrow \pi^+ \mu^+ \mu^- and D+→π+e+e−D^+\rightarrow \pi^+ e^+ e^- in data from Fermilab charm hadroproduction experiment E791. No signal above background is found, and we obtain upper limits on branching fractions, B(D+→π+ÎŒ+Ό−)<1.8×10−5B(D^+\rightarrow \pi^+ \mu^+ \mu^-) < 1.8 \times 10^{-5} and B(D+→π+e+e−)<6.6×10−5B(D^+\rightarrow \pi^+ e^+ e^-) < 6.6 \times 10^{-5}, at the 90\% confidence level.Comment: nine pages with figures; compressed, uuencoded postscrip

    Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2

    Full text link
    We present asymmetries between the production of D+ and D- mesons in Fermilab experiment E791 as a function of xF and pt**2. The data used here consist of 74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C and Pt foils. The measurements are compared to results of models which predict differences between the production of heavy-quark mesons that have a light quark in common with the beam (leading particles) and those that do not (non-leading particles). While the default models do not agree with our data, we can reach agreement with one of them, PYTHIA, by making a limited number of changes to parameters used

    Experimental study of mercury removal from exhaust gases

    Get PDF
    An initial study has been made of the use of synthetic zeolites for mercury capture from exhaust gases. Synthetic zeolites (Na-X and Na-P1), and for comparison a natural zeolite (clinoptilolite) and activated carbon with bromine (AC/Br) were tested for mercury uptake from a gaseous stream. The materials were subjected to mercury adsorption tests and their thermal stability was evaluated. The untreated synthetic zeolites had negligible mercury uptake, but after impregnation with silver, the adsorption of mercury was markedly improved. The synthetic zeolite Na-X impregnated with silver adsorbed significantly more mercury before breakthrough than the activated carbon impregnated with bromine, indicating the potential of zeolite derived from coal fly ash as a new sorbent for capture of mercury from flue gases

    Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly

    Get PDF
    To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)]=MOFNH2; [NiLethylamine]2+=[Ni(C12H32N8)]2+; BPDC2-=4,4???-biphenyldicarboxylate) possessing covalently tethered alkylamine groups without post-synthetic modification. Two-amine groups per metal centre were introduced by this method. MOFNH2 showed enhanced CO2 uptake at elevated temperatures, attributed to active chemical interactions between the amine groups and the CO2 molecules. Due to the narrow channels of MOFNH2, the accessibility to the channel of CO2 is the limiting factor in its sorption behaviour. In this context, only crystal size reduction of MOFNH2 led to much faster and greater CO2 uptake at low pressures.open
    • 

    corecore