409 research outputs found

    Assessment of On-going tectonic deformation in the Goriganga River Basin, Eastern Kumaon Himalaya Using Geospatial Technology

    Get PDF
    The Goriganga river basin lies in the Northeast Kumaon Himalaya and is found suitable for assessing active tectonics at different scales. In addition, this study focuses on the assessment of ongoing tectonic activity through morphotectonic measurement of the Goriganga river basin, which is an ideal location for such analysis and Goriganga river basin transects with three major domains of Himalaya’s lithotectonic structures viz., Tethys, Vaikrita, and Lesser Himalayan Domain. To realize this task, the ASTER Digital Elevation Model was used and found suitable to extract different morphotectonic indices such as Stream Length Gradient (SL), Hypsometric Integral (HI), Length of Overland Flow (Lg), Drainage Density (Dd) and Channel Sinuosity (Cs).  Results of these important indices, including SL (18- 4737) HI (0.26- 0.57), and Lg (0.08- 0.19) depict greater variability in the tectonics activity while these values are correspondingly high in the close proximity of lithotectonic units, showing strong tectonic activity. In the extreme south, the Rauntis Gad basin strongly influences tectonism due to transecting syncline and anticline as well as unknown active faults.

    MLIP: using multiple processors to compute the posterior probability of linkage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Localization of complex traits by genetic linkage analysis may involve exploration of a vast multidimensional parameter space. The posterior probability of linkage (PPL), a class of statistics for complex trait genetic mapping in humans, is designed to model the trait model complexity represented by the multidimensional parameter space in a mathematically rigorous fashion. However, the method requires the evaluation of integrals with no functional form, making it difficult to compute, and thus further test, develop and apply. This paper describes MLIP, a multiprocessor two-point genetic linkage analysis system that supports statistical calculations, such as the PPL, based on the full parameter space implicit in the linkage likelihood.</p> <p>Results</p> <p>The fundamental question we address here is whether the use of additional processors effectively reduces total computation time for a PPL calculation. We use a variety of data – both simulated and real – to explore the question "how close can we get?" to linear speedup. Empirical results of our study show that MLIP does significantly speed up two-point log-likelihood ratio calculations over a grid space of model parameters.</p> <p>Conclusion</p> <p>Observed performance of the program is dependent on characteristics of the data including granularity of the parameter grid space being explored and pedigree size and structure. While work continues to further optimize performance, the current version of the program can already be used to efficiently compute the PPL. Thanks to MLIP, full multidimensional genome scans are now routinely being completed at our centers with runtimes on the order of days, not months or years.</p

    Deformation effects in 56^{56}Ni nuclei produced in 28^{28}Si+28^{28}Si at 112 MeV

    Full text link
    Velocity and energy spectra of the light charged particles (protons and α\alpha-particles) emitted in the 28^{28}Si(Elab_{lab} = 112 MeV) + 28^{28}Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle multidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of α\alpha-particles emitted from the 28^{28}Si + 28^{28}Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous α\alpha-particle data from the 30^{30}Si + 30^{30}Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the ACN_{CN} ~ 60 mass region.Comment: 25 pages, 6 figure

    Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne@C60^{z-}

    Full text link
    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A@C60^{z-} are theoretically studied and exemplified by the photoionization of Ne in Ne@C{60}^{z-}. Remarkably, above a particular nl ionization threshold of Ne in neutral Ne@C60 (I_{nl}^{z=0}), confinement resonances in corresponding partial photoionization cross sections sigma_{nl} of Ne in any charged Ne@C60^{z-} remain almost intact by a charge z on the carbon cage, as a general phenomenon. At lower photon energies, omega < I_{nl}^{z=0}, the corresponding photoionization cross sections develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section sigma_{2p} of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.Comment: 6 pages, 4 figures, Latex2e, jpconf.cls styl

    Parietal Cortex Regulates Visual Salience and Salience-Driven Behavior

    Get PDF
    Chen et al. show that inactivation of parietal cortex selectively reduces salience signals within prefrontal cortex and diminishes the influence of salience on visually guided behavior. The results demonstrate a causal role of parietal cortex in regulating salience signals within the brain and in controlling salience-driven behavior

    Deformation effects in the 28^{28}Si+12^{12}C and 28^{28}Si+28^{28}Si reaction Search

    Full text link
    The possible occurence of highly deformed configurations is investigated in the 40^{40}Ca and 56^{56}Ni di-nuclear systems as formed in the 28^{28}Si+12^{12}C,28^{28}Si reactions by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {\sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large 8^{8}Be cluster emission of a binary nature.Comment: 3 pages latex, 2 eps figures, paper presented in "wokshop on physics with multidetector array (pmda2000)Calcutta, India (to be published at PRAMANA, journal of Physics, India

    Diffuse versus square-well confining potentials in modelling AA@C60_{60} atoms

    Full text link
    Attention: this version-22 of the manuscript differs from its previously uploaded version-11 (arXiv:1112.6158v1) and subsequently published in 2012 J. Phys. B \textbf{45} 105102 only by a removed typo in Eq.(2) of version-11; there was the erroneous factor "2" in both terms in the right-hand-side of the Eq.(2) of version-11. Now that the typo is removed, Eq.(2) is correct. A perceived advantage for the replacement of a discontinuous square-well pseudo-potential, which is often used by various researchers as an approximation to the actual C60_{60} cage potential in calculations of endohedral atoms AA@C60_{60}, by a more realistic diffuse potential is explored. The photoionization of endohedral H@C60_{60} and Xe@C60_{60} is chosen as the case study. The diffuse potential is modelled by a combination of two Woods-Saxon potentials. It is demonstrated that photoionization spectra of AA@C60_{60} atoms are largely insensitive to the degree η\eta of diffuseness of the potential borders, in a reasonably broad range of η\eta's. Alternatively, these spectra are found to be insensitive to discontinuity of the square-well potential either. Both potentials result in practically identical calculated spectra. New numerical values for the set of square-well parameters, which lead to a better agreement between experimental and theoretical data for AA@C60_{60} spectra, are recommended for future studies.Comment: 11 pages, 4 figure

    Recognition schemes for protein-nucleic acid interactions

    Get PDF
    The molecular forces involved in protein-nucleic acid interaction are electrostatic, stacking and hydrogen-bonding. These interactions have a certain amount of specificity due to the directional nature of such interactions and the spatial contributions of the steric effects of different substituent groups. Quantum chemical calculations on these interactions have been reported which clearly bring out such features. While the binding energies for electrostatic interactions are an order of magnitude higher, the differences in interaction energies for structures stabilised by hydrogen-bonding and stacking are relatively small. Thus, the molecular interactions alone cannot explain the highly specific nature of binding observed in certain segments of proteins and nucleic acids. It is therefore logical to assume that the sequence dependent three dimensional structures of these molecules help to place the functional groups in the correct geometry for a favourable interaction between the two molecules. We have carried out 2D-FT nuclear magnetic resonance studies on the oligonucleotide d-GGATCCGGATCC. This oligonucleotide sequence has two binding sites for the restriction enzyme Bam H1. Our studies indicate that the conformation of this DNA fragment is predominantly B-type except near the binding sites where the ribose ring prefers a3E conformation. This interesting finding raises the general question about the presence of specificity in the inherent backbone structures of proteins and nucleic acids as opposed to specific intermolecular interactions which may induce conformational changes to facilitate such binding
    • …
    corecore