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SUMMARY

Unique stimuli stand out. Despite an abundance of
competing sensory stimuli, the detection of the most
salient ones occurs without effort, and that detection
contributes to theguidanceofadaptivebehavior.Neu-
rons sensitive to the salienceof visual stimuli arewide-
spread throughout the primate visual system and are
thought to shape the selection of visual targets. How-
ever, a neural source of salience remains elusive. In an
attempt to identify a source of visual salience, we
reversibly inactivated parietal cortex and simulta-
neously recorded salience signals in prefrontal cortex.
Inactivation of parietal cortex not only caused pro-
nounced and selective reductions of salience signals
in prefrontal cortex but also diminished the influence
of salience on visually guided behavior. These obser-
vations demonstrate a causal role of parietal cortex
in regulating salience signals within the brain and in
controlling salience-driven behavior.

INTRODUCTION

Throughout the brain, sensory input is continually filtered in favor

of information that more adaptively shapes behavior. This

filtering of sensory information is often called selective attention,

a basic cognitive function. Attention can be goal driven or stim-

ulus driven, the former describing selective processing because

of an endogenously generated signal (e.g., representation of a

rule, strategy, or motivational state) and the latter describing

selective processing based solely on stimulus properties (Knud-

sen, 2007). Progress has been made in identifying the neural cir-

cuits controlling goal-driven attention, particularly in the primate

visual system (Moore and Zirnsak, 2017). In contrast, the mech-

anisms controlling stimulus-driven attention remain largely un-

known. In stimulus-driven attention, the selective processing of

sensory stimuli occurs automatically for stimuli that are salient

because of their inherent ethological relevance (e.g., a looming

object) or their uniqueness among all other stimuli (e.g., a single

red stimulus among green ones) (Knudsen, 2007). In the visual

modality, models of stimulus-driven attention have been devel-

oped largely from psychophysical studies of the influence of

unique visual features on the allocation of attention (Egeth

et al., 1972; Itti et al., 1998; Koch and Ullman, 1985; Treisman

and Gelade, 1980). These models suggest that the neural mech-

anisms of stimulus-driven attention may be separable at some

level from those controlling goal-driven attention. A key aspect

of such models is the proposition that contrasts in the compo-

nent features within a visual scene (e.g., color) are combined

from feature-selective inputs to form maps of salience in which

unique objects can be localized in space, regardless of the fea-

tures that define them (Itti et al., 1998; Soltani and Koch, 2010).

In the primate brain, the control of goal-driven visual attention

appears to be accomplished by neurons distributed within areas

of prefrontal cortex (Bichot et al., 2015; Buschman and Miller,

2007; Kastner et al., 1999; Moore and Fallah, 2001) and posterior

parietal cortex (PPC) (Buschman and Miller, 2007; Kastner et al.,

1999), along with the superior colliculus (Ignashchenkova

et al., 2004; Krauzlis et al., 2013) and the pulvinar (Saalmann

et al., 2012; Zhou et al., 2016). However, a lingering major ques-

tion is the extent to which any of these structures contributes

causally to stimulus-driven attention. Although many studies

have examined the influence of visual salience on the responses

of neurons in these structures (Buschman andMiller, 2007; Con-

stantinidis and Steinmetz, 2001; Ipata et al., 2006; Thompson

and Bichot, 2005) and throughout posterior visual cortex (Allman

et al., 1985; Burrows and Moore, 2009; Hegdé and Felleman,

2003; Knierim and van Essen, 1992; Motter, 1994; Reynolds

and Desimone, 2003), none have identified the structures that

contribute causally to the representation of salience in the brain.

An abundance of neurophysiological evidence suggests a role of

PPC in stimulus-driven attention and to the coding of visual

salience (Gottlieb et al., 1998; Ipata et al., 2006; Kusunoki

et al., 2000), particularly the lateral intraparietal (LIP) area (Bisley

et al., 2011). Indeed, the emergence of visual salience signals

within PPC seems to proceed faster than in prefrontal areas,

suggesting that neurons there compute a map of visual salience

that propagates to downstream prefrontal areas (Buschman and

Miller, 2007). Yet despite the strong correlative evidence of a role

of PPC to visual salience, such a role has not been causally

examined. Previous studies have demonstrated a causal role

of PPC areas in multiple visuospatial functions (Gottlieb and
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Snyder, 2010), including goal-driven attention (Liu et al., 2010;

Wardak et al., 2004), eye and arm movement planning (Hwang

et al., 2012; Liu et al., 2010), and perceptual decision-making

(Zhou and Freedman, 2019, although see Katz et al., 2016), but

its contribution to visual salience has not been tested.

To address this question, we studied the contribution of PPC

to visual salience by reversibly inactivating it in behaving mon-

keys. We measured the effects of reversible inactivation both

on the representation of salience downstream of PPC in prefron-

tal cortex and on salience-driven behavior. We first show that

reversible unilateral inactivation of PPC produced behavioral ef-

fects consistent with previous studies. We then show that such

inactivation led to a selective reduction in coding of unique stim-

uli by neural activity within prefrontal cortex. Finally, we show

that PPC inactivation diminished the influence of salience on

visually guided eye movements.

RESULTS

Behavioral Effects of PPC Inactivation
We reversibly inactivated large portions of PPC of two behaving

monkeys (J and Q) via cryoloops that were chronically implanted

within the intraparietal sulcus (IPS) (see STAR Methods) (Fig-

ure S1). Cryoloops have been used extensively in the primate

brain to temporarily eliminate the spiking activity of neurons

within large expanses of neocortex in behaving animals (Hupé

et al., 1998; Lomber et al., 1999; Ponce et al., 2008; Smolyan-

skaya et al., 2015). To assess the effectiveness of the inactiva-

tion, we first measured its impact on behaviors known to be

affected by disruption of PPC activity in primates (Lynch and

McLaren, 1989; Wardak et al., 2002). We did this in two ways.

First, we measured the effects of inactivation on exploratory

eye movements during free viewing of complex images. Mon-

keys were allowed to freely view large images (79–98 by 49–55

degrees of visual angle [dva]) for 3 s (Figure 1A). Consistent

with previous observations, inactivation of PPC in monkeys

reduced the tendency to visually explore the contralateral half

of head-centered space (Figure 1B; Figure S2). To quantify this

effect, we computed the density of fixations during free viewing

across all images for the two monkeys and then compared the

densities between control and inactivation (Figure 1C). For

both monkeys, PPC inactivation reduced the fixation density

within the contralateral visual field, resulting in a significant

reduction in the proportion of fixations contralateral to the inac-

tivation (monkey J, controlcontra = 0.49, inactivationcontra = 0.37,

p < 10�3; monkey Q, controlcontra = 0.71, inactivationcontra =

0.53, p < 10�34; paired t test) and a shift in the center of mass

of fixations toward the ipsilateral visual field (monkey J, shift =

5.11 dva, p < 10�28; monkey Q, shift = 4.14 dva, p < 10�28; paired

t test). Thus, even with a coarse measure of behavior, the effect

of PPC inactivation was clear.

Second, we used a double-target choice task to psychophys-

ically assess the effect of inactivation on the tendency of

monkeys to choose targets in the two hemifields (Schiller and

Tehovnik, 2003; Soltani et al., 2013). In this task, monkeys

were rewarded for choosing between two saccadic targets:

one located within the contralateral hemifield and one in the

ipsilateral hemifield. The temporal onset of the two targets was

systematically varied such that the contralateral stimulus could

appear earlier or later than the opposite stimulus (Figure 1D).
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Figure 1. Behavioral Effects of PPC

Inactivation

(A) Free-viewing task. Images presented to the

monkeys included real-word photographs, paint-

ings, cartoons, and abstract patterns. Identical

images were presented during both control blocks

(top, gold shading in IPS) and inactivation blocks

(bottom, blue shading in IPS).

(B) Example image presented to one monkey

during a control block (top) and an inactivation

block (bottom). Circles indicate regions of fixation,

and lines indicate saccades. The origin of the co-

ordinate system indicates the initial fixation of the

monkey at the onset of the image (dva, degrees of

visual angle).

(C) Change in fixation densities across the popu-

lation of images for monkey J (top) and monkey Q

(bottom). The left part of the color maps corre-

sponds to the visual field contralateral to the in-

activated PPC in head-centered coordinates.

(D) Double-target choice task. Two targets were

presented at varying temporal onset asyn-

chronies; contralateral targets could trail (�) or

lead (+) ipsilateral targets.

(E) Example experimental session for one monkey.

Target choice functions during control and during

PPC inactivation are plotted in gold and blue,

respectively. Positive values denote contralateral

leading targets.

(F) Distribution of shifts in the PES across all ses-

sions in the two monkeys.
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The monkey’s tendency to select the contralateral target could

then be measured as the temporal onset asynchrony required

for equal probability of selecting either target. Thus, a neglect

of one hemifield would result in a shift of the point of equal selec-

tion (PES) toward the ipsilateral hemifield. That is what we

observed: the PES shifted in favor of the ipsilateral target (Fig-

ure 1E). As a result, for contralateral targets to be chosen as

frequently, they needed to appear earlier than during control

blocks. This effect was reliably obtained in both monkeys (mon-

key J, DPES = 189.19 ± 76.13 ms, p < 0.04; monkey Q, DPES =

85.19 ± 13.56 ms, p < 2.26 3 10�6; paired t test) (Figure 1F).

Notably, inactivation of the ventral IPS alone was sufficient to

produce effects equivalent to both dorsal and ventral inactivation

(Figure S3), consistent with an earlier comparison of dorsal and

ventral LIP areas (Liu et al., 2010). The magnitude of the choice

effect varied across sessions, similar to previous studies (Balan

and Gottlieb, 2009). However, it was generally greater than that

of studies usingmore localized PPC inactivation (Schiller and Te-

hovnik, 2003; Wardak et al., 2002; Balan and Gottlieb, 2009).

Thus, by both behavioral measures, PPC inactivation produced

behavioral effects that generally resembled the effects of PPC
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Figure 2. Prefrontal Representation of Vi-

sual Salience in Neuronal and LFP Activity

(A) Visual stimuli consisted of a single-colored

stimulus presented in isolation (Isolated) or among

an array (6 3 4) of identically colored stimuli

(Unique).

(B) Example CRFs of a single FEF neuronal

recording mapped with an isolated red or green

stimulus (top), and URFs of the same neuronal

recording mapped with a unique red or green

stimulus (bottom). Responses were normalized

across stimulus conditions. Icons above each RF

denote stimulus conditions, but not the full array.

(C) Spiking responses from an example neuronal

recording to isolated and unique stimuli pre-

sented inside the CRF/URF (dark gold), shown

with responses to single and unique stimuli pre-

sented outside of the CRF/URF or to identically

colored stimulus arrays (light gold) for two

color polarities (left icons). Shading around the

response denotes ± SEM.

(D) Response spectra of an example FEF LFP

recording. Same conventions as in (C).

(E) High-gamma band CRFs and URFs for an

example recording. Responses were normalized

across stimulus conditions.

inactivation or damage inmonkeys (Balan

and Gottlieb, 2009; Lynch and McLaren,

1989), effects that are thought to model

hemispatial neglect in humans (Kubanek

et al., 2015).

Representation of Salience by
Neurons within Prefrontal Cortex
To assess the effects of PPC inactivation

on the representation of visual salience,

we recorded neuronal spiking activity

and local field potentials (LFPs) within prefrontal cortex, specif-

ically within the frontal eye field (FEF). Neurons within the FEF

receive input directly frommost areas within posterior visual cor-

tex (Schall et al., 1995), as well as strong inputs from areas within

PPC, particularly the LIP area (Lewis and Van Essen, 2000), and

FEF neurons are sensitive to visual salience (Fernandes et al.,

2014; Thompson and Bichot, 2005). We recorded the activity

of FEF neurons in two behaving monkeys using multichannel

microelectrodes (see STAR Methods). We then assessed the

representation of visual salience in the recorded neuronal activity

(n = 352) and LFP activity (n = 192) that was present before inac-

tivation. For both types of activity, we measured the responses

to visual stimuli consisting of a single-colored stimulus pre-

sented in isolation or among an array of identically or differently

colored stimuli (Figure 2A).

Using an isolated red or green stimulus, wemapped the region

of space most sensitive to visual stimulation, i.e., the classical

receptive field (CRF), for each neuronal recording. FEF neurons

are not typically selective for stimulus features, including color

(Bichot et al., 1996; Mohler et al., 1973), as in the example shown

in Figure 2B. Nonetheless, FEF neurons are sensitive to stimuli

Neuron 106, 177–187, April 8, 2020 179



that are unique among competing ones (Buschman and Miller,

2007; Thompson and Bichot, 2005). Thus, for each neuronal

recording, we could also map the region of space most sensitive

to a unique stimulus, or a unique receptive field (URF). Neurons

therefore signaled the location of both isolated and unique stim-

uli, independent of color (Figure 2B). Across our population of

neurons, the difference in responses to an isolated red or green

stimulus was typically small (median = 4.6%), consistent with

previous studies (Bichot et al., 1996). Nonetheless, for the

same population, neuronal responses were robustly enhanced

by the appearance of a unique stimulus in the URF. The

enhancement was evident in comparisons with responses to ar-

rays in which the unique stimulus fell outside of the URF

(UniqueIn � UniqueOut). The enhancement was also evident in

comparisons with responses to an array that rendered the URF

stimulus identical to surrounding stimuli (UniqueIn � Identical).

Both enhancements were evident regardless of color polarity

(Figure 2C). We quantified the two types of enhancement by

computing a standard index of response enhancement, specif-

ically the difference between the UniqueIn and the UniqueOut

(or the Identical) responses, divided by their sum. Across the

population, both types of enhancement were highly significant

(median UniqueIn � UniqueOut index = 0.11, p < 10�45; median

UniqueIn � Identical index = 0.11, p < 10�44; paired t test), with

approximately half of the population exhibiting significant en-

hancements in both comparisons (UniqueIn � UniqueOut, 193/

352; UniqueIn � Identical, 173/352).

In addition, we probed the representation of visual salience in

the FEF LFPs. Information about the location of isolated visual

stimuli is robustly signaled within the alpha (8–12 Hz) and high-

gamma (60–150 Hz) bands of FEF LFPs, and clear CRFs can

be derived from activity in each band (Chen et al., 2018). In the

present study, we observed that activity in the high-gamma

band, but not the alpha band, also robustly signaled the location

of a unique visual stimulus (Table S1). Compared with other fre-

quency bands, responses to unique stimuli weremost consistent

in the high-gamma LFPs, and they were enhanced relative to re-

sponses to the appearance of unique stimuli outside of the URF

and to arrays that rendered the URF stimulus identical to sur-

rounding stimuli (Figure 2D). Activity in the beta band showed

significant reductions in responses to unique stimuli inside the

receptive field (RF), relative to stimuli outside or to identical stim-

uli. However, consistent with previous observations (Chen et al.,

2018), clear CRFs and URFs could not be obtained from beta

band responses. Using the high-gamma signal, we derived vi-

sual RFs for both the isolated and the unique stimuli, similar to

the spiking activity (Figure 2E). Across the population of re-

corded high-gamma LFPs, we observed both types of enhance-

ment observed in the spiking responses (UniqueIn � UniqueOut,

median DEnergy = 0.50 dB, p < 10�20; UniqueIn � Identical, me-

dian DEnergy = 0.47 dB, p < 10�21; paired t test). Thus, similar to

the spiking activity, the high-gamma LFPs were highly sensitive

to visual salience.

Salience Signals in Prefrontal Cortex during PPC
Inactivation
Given the clear behavioral effects we observed during PPC inac-

tivation, we next asked whether removing parietal input alters

visual responses in the FEF. We reasoned that if parietal areas

contribute distinctively to the representation of visual salience,

then PPC inactivation should selectively reduce salience signals

downstream in the FEF. That is what we observed. First, PPC

inactivation did not significantly change the selectivity of FEF

neurons to color (p = 0.99, paired t test). Second, it had relatively

small effects on visual responses to isolated stimuli and the

resultant CRFs derived from spiking or LFP activity. However,

inactivation strongly altered visual responses to unique stimuli

and resultant URFs (Figure 3). During inactivation, visually driven

activity was generally reduced in proportion to the magnitude of

visual responses during control trials (analysis of covariance

[ANCOVA] main effect, p < 10�41). However, the size of the

reduction significantly depended on the stimulus condition

(ANCOVA interaction, p < 0.002) (Table S2), with the URF stim-

ulus yielding the greatest reduction in visual responses. This se-

lective reduction can be seen in the example neuron shown in

Figure 4A. In this example, responses to an isolated stimulus

were minimally affected by PPC inactivation. In contrast, re-

sponses to the unique stimulus were diminished compared

with responses to arrays in which the unique stimulus fell outside

of the URF or an array that rendered the URF stimulus identical to

surrounding stimuli. As a consequence of the selective reduction

in visual responses, the two types of salience enhancement

observed in FEF neurons were markedly reduced by inactivation

(control: UniqueIn � UniqueOut index = 0.26, inactivation:

UniqueIn � UniqueOut index = 0.10; control: UniqueIn � Identical

index = 0.33, inactivation: UniqueIn� Identical index = 0.17). This

pattern of results was similar across the population. For neurons

modulated in at least one of the two metrics (n = 193), inactiva-

tion selectively reduced responses to unique stimuli (Figure 4B;

Figure S4A) and, consequently, both types of enhancement

(UniqueIn versus UniqueOut, p < 10�11; UniqueIn versus Identical,

p < 10�15; paired t test). Reductions in the two types of enhance-

ment indices were�38% (control: median UniqueIn � UniqueOut

index = 0.21, inactivation: median UniqueIn � UniqueOut index =

0.13, p < 10�9; control: UniqueIn � Identical index = 0.18, inacti-

vation: UniqueIn � Identical index = 0.11, p < 10�13; paired t test)

(Figures S4B and S4C).

To further quantify the effects of PPC inactivation across the

population of FEF neurons, wemeasured the accuracy of a linear

classifier in discriminating between visual stimulus conditions

using the trial-by-trial responses of each neuronal recording.

We focused our analysis on 193 FEF neuronal recordings with

significant response differences between inside and outside

RF conditions for both isolated and unique stimuli (see STAR

Methods) (Figure 4C). For these neurons, sensitivity to visual

salience was selectively reduced. During control trials, the clas-

sifier performed above chance in discriminating unique inside

and outside conditions (UniqueIn versus UniqueOut) in 147

neuronal recordings. However, during inactivation, that number

was reduced by 40% to 88 (McNemar’s chi-square test = 43.7,

p < 10�10), and the median classifier performance was reduced

significantly by 7.5% (p < 10�16, paired t test), a 39% reduction in

above-chance performance (see STAR Methods). Similarly, the

classifier performed above chance in discriminating between

the unique RF stimulus and the identical array (UniqueIn versus

Identical) in 135 neuronal recordings during control trials. Yet

180 Neuron 106, 177–187, April 8, 2020



during inactivation, that number was reduced by 44% to 75

(McNemar’s chi-square test = 37.8, p < 10�9), and the

median classifier performance was reduced significantly by

7.5% (p < 10�16, paired t test), a 43% reduction in above-chance

performance. This reduction in discrimination performance was

accompanied by a reduction in the two types of salience

enhancement, a reduction that was correlated with enhance-

ment during control trials (UniqueIn � UniqueOut, r = �0.40,

p < 10�17; UniqueIn � Identical, r = �0.44, p < 10�20; paired

t test). The slopes of both correlations were significantly steeper

than that observed in responses to isolated stimuli (UniqueIn �
UniqueOut versus Isolated, Dslope = �0.21, p < 10�3;

UniqueIn � Identical versus Isolated, Dslope = �0.23, p < 10�5;

ANCOVA), which again indicates that the reduction in selectivity

was larger for unique stimuli. Correspondingly, the reduction in

performance during inactivation for classifiers trained to discrim-

inate an isolated stimulus inside versus outside of the CRF was

2.9% (p < 10�7, paired t test), an 8% reduction in above-chance

performance, which was significantly smaller than the reduction

observed for unique stimuli (UniqueIn � UniqueOut versus Iso-

lated, p < 10�4; UniqueIn � Identical versus Isolated, p < 10�4;

paired t test). Thus, PPC inactivation selectively reduced the rep-

resentation of visual salience by neurons in prefrontal cortex.

Next, we examined the effects of PPC inactivation on the

salience-driven enhancement of FEF LFP activity. During control

trials, the enhancement in high-gamma band LFP responses to

unique stimuli emerged�100 ms after the visual onset response

and was evident in both UniqueIn � UniqueOut and UniqueIn �
Identical comparisons (Figure 5). During PPC inactivation, we

found that both types of enhancement were reduced. As with

the spiking activity, the reduction in high-gamma band re-

sponses to visual stimulation was largest when the unique stim-

ulus appeared in the URF (Figure S5). Consequently, both types

of enhancement observed in high-gamma responses to unique

stimuli were reduced during PPC inactivation. The two types of

enhancement were reduced significantly by 35%–37% (control:

median UniqueIn � UniqueOut = 0.56 dB, inactivation: median

UniqueIn � UniqueOut = 0.34 dB, p < 0.003; control: UniqueIn �
Identical = 0.47 dB, inactivation: UniqueIn � Identical = 0.31

dB, p < 0.004; paired t test). As with the spiking activity, smaller

changes were observed in responses to isolated stimuli. Unlike

responses to unique RF stimuli, in which primarily the high-

gamma band responses discriminated between inside and

outside RF conditions, both alpha and high-gamma band re-

sponses discriminated between inside and outside conditions

for isolated stimuli. During inactivation, both signals remained.

But more importantly, the difference between inside and outside

RF responses in the high-gamma band was reduced to a lesser

extent than that observed for unique RF stimuli (15%, p < 0.006;

UniqueIn � UniqueOut versus Isolated, p < 0.02; UniqueIn � Iden-

tical versus Isolated, p < 0.03; paired t test). So as with the

spiking responses, PPC inactivation selectively reduced the rep-

resentation of visual salience in prefrontal LFPs.

Changes in Salience-Driven Behavior during PPC
Inactivation
Given the selective reduction in the sensitivity of FEF neurons to

visual salience during PPC inactivation, we wondered whether

there might be corresponding changes in salience-driven

behavior. Because the FEF has a well-established role in the
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programming and triggering of visually guided saccadic eye

movements (Schall, 2004; Schiller et al., 1979), we considered

that the inactivation might alter the influence of salience on this

behavior. Our initial behavioral results with the free-viewing

and double-target tasks indeed produced reliable effects of

PPC inactivation on visually guided eye movements. However,

the free-viewing task provided an additional opportunity to

assess whether the inactivation altered the influence of visual

salience on eye movements. Beginning with the earliest model

(Koch and Ullman, 1985), a wealth of models have been devel-

oped to quantify physical salience within images based on the

contrast across various feature dimensions (e.g., color) (Borji

et al., 2013; Harel et al., 2007; Itti et al., 1998; Wang et al.,

2016), thereby identifying points of relative salience within an im-

age. Moreover, thesemodels can be used to predict where in the

image human observers fixate with varying accuracy (Borji et al.,

2013). We leveraged this approach to quantify the distribution of

salience within the images our monkeys freely viewed and to

assess the influence of salience on eye movements. Salience

maps were computed from each of the 487 images viewed by

20 40 60 80 100

Discirimination Accuracy
Control (%)

20

40

60

80

100

D
is

cr
im

in
at

io
n 

Ac
cu

ra
cy

 
In

ac
tiv

at
io

n 
(%

)

C

Chance 
Level
(50%)

0 1

0

1

f

f

100

150

0 200 400

Ac
tiv

ity
 (s

pi
ke

s/
s)

A

50

Time relative to Stimulus Onset (ms)

0 200 400

Fovea

 
In

ac
t. 

-
C

on
tr

ol

Control 

20 40 60 80 100
20

40

60

80

100

0 1

0

1

100

150

0 200 400

50

0 200 400

Fovea
RF

10
-0.5

0

0.5

20 40 60 80 100 0 1

0 200 400 0 200 400

10

100

150

50

20

40

60

80

100

0

1

-0.5

0

0.5

1
-0.5

0

0.5

0

Control Inactivation

Time relative to Stimulus Onset (ms)

0 200 400 0 200 400 0 200 400 0 200 400 0 200 400 0 200 400

Ac
tiv

ity
 (s

pi
ke

s/
s)

50

100

B

50

100

50

100
10

Control 

 
In

ac
t. 

1

0
10

1

0

10

1

0

Figure 4. Representation of Salience in Prefrontal Neuronal Activity during PPC Inactivation

(A) Mean responses of an example neuron to different stimulus conditions during control (gold) and PPC inactivation (blue). Left, responses to UniqueIn (dark) and

UniqueOut (light) stimuli. Middle, responses of the same neuron to UniqueIn (dark) and Identical (light) stimuli. Right, responses of the same neuron to the isolated

stimuli presented inside (dark) and outside (light) of the CRF. Shading around the response denotes ± SEM.

(B) Mean responses for all modulated neurons (n = 193) during control and inactivation blocks for each of the stimulus comparisons (UniqueIn versus UniqueOut,

UniqueIn versus Identical, and IsolatedIn versus IsolatedOut). Same notation as in (A). Gray scatterplots show the reduction in normalized response differences for

all recordings (n = 352).

(C) Accuracy of classifiers trained on neuronal spiking activity to discriminate among stimulus conditions during control and PPC inactivation. Left, accuracy of
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the two monkeys (65, monkey J; 431, monkey Q) using the

graph-based visual salience (GBVS) model (Harel et al., 2007)

(Figure 6A; Figure S6A). Next, as in human studies, wemeasured

the 2D correlation between the distribution of fixations and the

salience map of each image before and after PPC inactivation

(see STAR Methods) (Figure 6B). Before inactivation, as in hu-

man observers, fixations were weakly but significantly correlated

with image salience (Borji et al., 2013) (monkey J, rmedian = 0.11,

p < 10�28; monkey Q, rmedian = 0.15, p < 10�172), and these cor-

relations were significantly greater than correlations obtained

with shuffled images (Koehler et al., 2014) (see STAR Methods)

(monkey J, p < 10�3; monkey Q, p < 10�9; paired t test). More-

over, for both monkeys, PPC inactivation significantly reduced

the correlations for fixations made throughout the freely viewed

images (monkey J, Drmedian = �0.03, p < 10�4; monkey Q,

Drmedian =�0.01, p < 10�5; paired t test), indicating that inactiva-

tion diminished the influence of salience on visually guided eye

movements. More importantly, the reduced correlations with

salience were observed within the contralateral space in both

monkeys. We examined the change in correlations separately

for ipsilateral and contralateral fixations, defined either in eye-

centered or in head-centered coordinates (Figure 6B). In the

eye-centered analysis, we divided fixations within each image

into those resulting from movements made in a direction contra-

lateral or ipsilateral to the PPC inactivation, andwe computed 2D

correlations separately for the two sets of fixations. This analysis

revealed that PPC inactivation reduced correlations for

contralaterally directed fixations in both monkeys (monkey J,

Drmedian = �0.02, p < 0.008; monkey Q, Drmedian = �0.02,
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p < 10�13; paired t test) (Figure 6C). In

the head-centered analysis, we divided

fixations within each image into those

that landed within the contralateral or

ipsilateral side of the image, regardless

of the movement direction (Figure 6B).

Similar to the eye-centered results, the

image-centered analysis revealed that

PPC inactivation reduced correlations

for fixations within the contralateral half

of images in both monkeys (monkey J,

Drmedian = �0.02, p < 0.002; monkey Q,

Drmedian = �0.03, p < 10�17; paired

t test) (Figure 6C). By comparison, we

observed no consistent changes within

the ipsilateral hemifield (Figure S6B). The pattern of results was

similar when image salience was computedwith another popular

model (Itti et al., 1998) (Figure S6C). The consistent decrease in

contralateral correlation coefficients we observed was not a

result of decreased saccadic accuracy during inactivation,

because we did not observe such an effect (Figure S6D). More-

over, sham control sessions showed that the effect was not due

to the repetition of images across blocks (Figure S6E). Instead,

the decreased correlations appeared to result from a reduced in-

fluence of visual salience on the pattern of fixations directed to-

ward the contralateral visual space and fixations made within the

contralateral half of images during PPC inactivation, consistent

with the neurophysiological results.

DISCUSSION

Our observations demonstrate that neural activity within PPC is

causally involved in the emergence of salience signals in prefron-

tal cortex and in the influence of salience on behavior. During

PPC inactivation, we observed that neural responses to unique

visual stimuli were reduced relative to responses to non-unique

or isolated stimuli. Furthermore, we found that these reductions

in neural signals were accompanied by impairments in salience-

driven behavior. Parietal cortex, which is extensively evolved and

enlarged in primates, consists of a constellation of multimodal,

integrative cortical areas involved in the transformation of sen-

sory and motor signals across different coordinate frames and

motor effectors (Goldring and Krubitzer, 2017). Several previous

studies have examined the effects of PPC inactivation on visually
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guided behavior and have demonstrated a causal role of PPC

areas in multiple visuospatial functions (Gottlieb and Snyder,

2010), including goal-driven attention (Liu et al., 2010; Wardak

et al., 2004), eye and arm movement planning (Hwang et al.,

2012; Liu et al., 2010), and perceptual decision-making (Zhou

and Freedman, 2019, although see Katz et al., 2016). Visual

areas within PPC, such as the LIP area, are heavily intercon-

nected with feature-selective areas within extrastriate visual

cortex, where information about the salience in each feature

dimension is thought to be derived (Soltani and Koch, 2010).

Thus, areas like LIP might integrate salience across multiple fea-

tures to select unique stimuli and guide stimulus-driven attention

and behavior.

Although both the neurophysiological and the behavioral im-

pairments we observed were robust, they were not absolute,

as is often the case with studies using inactivation or lesions to

probe mechanisms of visual perception (De Weerd et al., 2003;

Gregoriou et al., 2014; Newsome and Paré, 1988; Ponce et al.,

2008). Thus, it is important to consider which mechanisms or

structures might underlie the residual sensitivity to visual

salience. The coding of salience in the FEF clearly depends on

input fromPPC, but this residual representation of salience could

in principle be computed de novo in the FEF, particularly given

the direct connections of FEF neurons with each of the many

feature-selective visual areas in extrastriate cortex (Schall

et al., 1995). It remains possible that salience signals within pa-

rietal cortex mutually depend on input from the FEF. In addition,

recent studies have identified representations of visual salience

with very short latencies within the superficial, visual layers of

the superior colliculus (White et al., 2017), which is heavily con-

nected with the FEF and is involved in the control of visually

guided eyemovements. Indeed, studies in birds reveal an impor-

tant role of the midbrain in the representation of visual salience

(Mysore and Knudsen, 2013). Neurons in the pulvinar might

also provide an important contribution (Saalmann et al., 2012).

An important goal of future studies should be to test the contri-

bution of each of these cortical and subcortical structures to vi-

sual salience.

A collection of past studies has identified causal roles of

several key structures in the control of goal-directed attention,

including PPC (Moore and Zirnsak, 2017). Future studies may

similarly reveal contributions of the same set of structures to

stimulus-driven attention. In addition, such studies might seek

to address the relative contributions of suspected structures in

stimulus-driven and goal-driven attention and thus to elucidate

the functional architecture of the primate visual attentional sys-

tems. For example, although the clear causal contribution of pa-

rietal cortex to stimulus-driven attention is consistent with a

dominant role of parietal cortex in this form of attention (Busch-

man and Miller, 2007), the relative contributions of parietal and

prefrontal cortex (e.g., the FEF) to either forms of attention re-

mains an open question. Inactivation of parietal cortex might

yield similar reductions in goal-driven modulation within prefron-

tal cortex as with stimulus-driven modulation, a result that would

contradict a division of labor between parietal and prefrontal.

Alternatively, parietal inactivationmight produce little or no effect

on goal-driven modulation within prefrontal cortex. This latter

possibility would be consistent with previous evidence of more

dramatic effects of inactivation (or lesions) of prefrontal cortex

on behavior in goal-driven tasks, when compared directly with

parietal perturbations (Lynch and McLaren, 1989; Suzuki and

Gottlieb, 2013). However, given the apparent involvement of

neurons within other structures in both stimulus-driven and

goal-driven attention, e.g., superior colliculus (Krauzlis et al.,

2013; White et al., 2017), several direct comparisons of the

effects of inactivation might be needed to potentially identify

dominant sources of both forms of attention within the primate

brain. Further studies might also seek to determine whether
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the control of either form of attention is largely shared by similar

or different distributed populations of neurons contained within

each of the key structures.

Biologically plausible models of the computation of visual

salience highlight the necessary role of feature-selective areas

in generating feature contrast (Itti et al., 1998; Koch and Ullman,

1985; Soltani and Koch, 2010). In these models, feature-selec-

tive inputs are combined across multiple feature dimensions

by neurons in non-selective structures (e.g., PPC) to form

salience maps. Neurons within visual areas of PPC, such as

the LIP area, receive direct inputs from feature-selective extras-

triate areas (Felleman and Van Essen, 1991), and indeed, this is a

common feature among other structures thought to contain

salience maps, e.g., the FEF (Schall et al., 1995) and the superior

colliculus (Cerkevich et al., 2014). Thus, as discussed above, it is

likely that multiple structures contribute to the computation of

visual salience. Our results identify PPC as one of them.
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Hegdé, J., and Felleman, D.J. (2003). How selective are V1 cells for pop-out

stimuli? J. Neurosci. 23, 9968–9980.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were in accordance with National Institutes of Health Guide for the Care and Use of Laboratory Animals,

the Society for Neuroscience Guidelines and Policies, and Stanford University Animal Care and Use Committee. Two healthy male

rhesus monkeys (Macaca mulatta, 17 and 16 kg), monkey J and monkey Q, were used in these experiments. The number of animals

used is typical for primate neurophysiological experiments.

METHOD DETAILS

General and Surgical Procedures
Surgery was conducted using aseptic techniques under general anesthesia (isoflurane) and analgesics were provided during post-

surgical recovery. Each animal was surgically implanted with a titanium head post and a cylindrical titanium recording chamber

(20 mm diameter) overlaying the arcuate sulcus. A craniotomy was then performed in the chambers on each animal, allowing access

to the FEF.

Cryoloops surgery and reversible inactivation of PPC
Each animal was surgically implanted with two stainless steel cryoloops within the intraparietal sulcus of one hemisphere. The size

and shape of the cryoloops were customized to fit the contours of the IPS and to completely fill the sulcus. One longer loop (2.2-2.43

0.4 cm) was placed ventrally, and one shorter loop was placed dorsally (1.7-1.8 3 0.3 cm) (Figure S1). During the cryoloop surgery,

unilateral craniotomies were made over the intraparietal sulcus. Cryoloops were then placed beneath the dura and upon the surface

of the arachnoid membrane in the dorsal and ventral intraparietal sulcus. The loops were secured to the skull with bone screws and

dental acrylic. The dura was replaced and bone defects around the implanted cooling loops were repaired with original bone, Gel-

foam (Pfizer) and dental acrylic. For detailed cryoloop implantation procedures, see Lomber and Payne (2000).

Inactivation procedures
During each experimental session, cortex within the IPSwas cooled by pumping chilledmethanol through the loop tubing. Loop tem-

perature was monitored and accurately regulated within 1�C of the desired value by controlling the rate of methanol flow. A stable

loop temperature (�5�C) was reached in �5-10 min of initiating cooling, and normal brain temperature was regained

within �2 minutes after the cessation of cooling, consistent with previous studies (Lomber et al., 1994, 1996). Loop temperatures

�5�C reliably deactivate neuronal activity across the full thickness of the underlying cortex (Lomber and Payne, 2000). During
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Offline Sorter, Version 3.0 Plexon https://plexon.com/products/offline-sorter/

Data Acquisition

OmniPlex System Plexon https://plexon.com/products/omniplex-

d-neural-data-acquisition-system-1/

Other

SR Research Eyelink Eye Tracker, Eyelink 1000 Plus Eyelink http://www.sr-research.com
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experimental sessions, blocks of inactivation lasted 30-60 minutes, and each session consisted of those in which only neurophys-

iological recordings or behavioral tests were done, as well as some sessions with both. In 8 neurophysiological sessions, data were

collected during a control block first, followed by an inactivation block (control-inactivation). In an additional 6 sessions, we collected

neurophysiological data during 2 pairs of sequential control-inactivation blocks (i.e., control-inactivation-control-inactivation). These

latter sessions allowed us to test for any possible effects of time and/or block order (e.g., Figures S4B and S4C). Tests of the effects of

inactivation on behavior were carried out almost exclusively on separate sessions. These behaviors included tests of inactivation

effects on double-target choices (24 separate sessions of 28 total) and on free-viewing of natural images (8 separate sessions of

8 total). In the behavior-only sessions, data were collected during a control block first, followed by an inactivation block (control-inac-

tivation). In addition, to control for the effects of block sequence on free-viewing, we collected data during an additional 4 sessions in

which no inactivation was performed in the second block (sham control).

Neurophysiological recording procedures
Recording sites within the FEFwere identified by eliciting short-latency, fixed vector saccadic eyemovements with trains (50-100ms)

of biphasic current pulses (%50 mA; 250 Hz; 0.25ms duration) as in previous studies (Bruce et al., 1985). Single-neuron and local field

potential (LFP) recordings were obtained with 16 or 32-channel linear array electrodes with contacts spaced 150 mm apart (V and

S-Probes, Plexon, Inc). Electrodes were lowered into the cortex using a hydraulic microdrive (Narishige International). Neural activity

wasmeasured against a local reference, a stainless guide tube, which was close to the electrode contacts. At the preamplifier stage,

signals were processed with 0.5 Hz 1-pole high-pass and 8 kHz 4-pole low-pass anti-aliasing Bessel filters, and then divided into two

streams for the recording of LFPs and spiking activity. The stream used for LFP recordingwas amplified (3 500 - 2000), processed by

a 4-pole 200 Hz low-pass Bessel filter and sampled at 1000 Hz. No other filters were used in the analyses. The stream used for spike

detection was processed by a 4-pole Bessel high-pass filter (300 Hz) a 2-pole Bessel low-passed filter (6000 Hz), andwas sampled at

40 kHz. Extracellular waveforms were classified as single neurons or multi-units using online-template-matching and subsequently

confirmed using offline sorting (Plexon). Overall, we recorded 352 units with visual activity, of which 68were well-isolated single units.

Among 14 sessions, LFP data was recorded in 11 sessions.

CRF and URF measurements
Wemeasured LFP and spiking activity derived CRFs within the FEF by randomly presenting a single isolated probe stimulus out of a

6 3 4 probe grid extending 75 3 45 dva (Isolated stimulus condition). In each recording session, we placed the probe grid so as to

cover the area where we expected to findmost RF locations based on the saccade vectors evoked by electrical stimulation at a given

recording site. The probes consisted of fully saturated red or green 7 3 7 dva squares. Similarly, we measured LFP and spiking ac-

tivity derived URFs within the FEF by randomly presenting a uniquely colored probe stimulus among an array of differently colored

stimuli, either a single green among 23 red or a single red among 23 green stimuli (Unique stimulus condition). In addition, we also

measured neural response (LFP and spiking activity) to an identically colored (24 red or 24 green) stimulus array (Identical stimulus

condition). Each stimulus condition was repeated at least 8 times during both control and inactivation conditions. Different stimulus

conditions were pseudo-randomly interleaved.

In each trial, monkeyswere required to fixate a central fixation point (13 1 dva fixationwindow) on a gray background (60 cd/m2) for

500ms to initiate the trial. Subsequently, either an Isolated, Unique, or Identical stimulus was presented for 500ms while the monkey

maintained fixation. Following stimulus offset, the monkey received a juice reward after an additional 300ms of fixation.

Behavioral procedures: free-viewing
During all behavioral measurements, eye position was monitored and stored at 1000 Hz (Eyelink 1000, SR Research). While seated

and head-restrained, monkeys were rewarded for freely viewing complex images, similar to a previous study (Killian et al., 2012). Im-

ages (Monkey J: 79 3 49 dva; Monkey Q: 98 3 55 dva;) were presented on a display (Monkey J: Samsung 2233RZ, 120 Hz refresh

rate, 16803 1050 pixel resolution; Monkey Q: ASUS VS228; 75 Hz refresh rate, 19203 1080 pixel resolution) positioned 28-30 cm in

front of the animal. A novel set of 100 images was used for each experimental session. In each trial, monkeys fixated a central fixation

point (1 3 1 dva fixation window) on a gray background (60 cd/m2) for 500 ms to initiate the image presentation. Each image was

displayed for 3 s and was shown in both control and inactivation blocks. Monkeys were rewarded at the end of each trial for exploring

the image for the full presentation time.

Behavioral procedures: choice task
To measure the effects of PPC inactivation on target selection, we quantified the monkey’s tendency to select stimuli at a particular

location as the target of a saccadic eye movement. We employed a double-target, choice task similar to one used previously

(Noudoost and Moore, 2011). In the task, the monkey was rewarded for making saccades to either one of two visual stimuli

(1 dva diameter) appearing at diametrically opposed locations on the same display as used in the free-viewing task. One of the stimuli

was positioned within the contralateral hemifield, and the other in the ipsilateral hemifield. The appearance of the two stimuli on a

given trial occurred within a range of temporal onset asynchronies (TOAs), from trials in which the contralateral target appeared first

(positive TOAs) to trials in which the contralateral target appeared second (negative TOAs). The range of TOAs for a given block of

trials was �800 to 800 ms, with 7-9 discrete TOAs evenly spaced within that range, including zero. Trials were randomly interleaved
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such that on any given trial the monkey could not predict the TOA. In a given experimental session, at least 2 blocks of trials were

collected, one prior to PPC inactivation, and one following it. Each block consisted of at least 10 trials per TOA. Each pair of pre-

and post-inactivation target selection blocks could be used to compare the probability that the monkey would choose one target

over the other as a function of TOA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Salience map and correlation analysis of fixations during free-viewing
Both the graph based visual salience model (GBVS) (Harel et al., 2007) and the Itti-Koch-Niebur model (Itti et al., 1998) were used to

compute the salience map for each image. For both models, feature channels including color, luminance, and orientation were used

in the computation of the salience map.

Similar to human free viewing studies (Borji et al., 2013), a 2-D Pearson correlation coefficient was computed to quantify the rela-

tionship between the salience map SMi of image i and the fixation density map FDMi of image i. Raw salience maps (323 18, Dx =

f2:5; 3:0gdva, Dy = f2:7; 3:0gdva;depending on the display) were used without interpolation. Fixation density maps were calcu-

lated in the same spatial resolution as the salience maps. The correlation for the full SM and full FDM is defined as

ri =

P32
x = 1

P18
y = 1

�
SMi;x;y � SMi

��
FDMi;x;y � FDMi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P32

x = 1

P18
y = 1

�
SMi;x;y � SMi

�2��P32
x= 1

P18
y = 1

�
FDMi;x;y � FDMi

�2�r (1)

whereSMi;x;y denotes the saliencemap for the ith image at the location ðx;yÞ, FDMi;x;y denotes the fixation density at the location ðx; yÞ
when the monkey was viewing the ith image, SMi denotes the mean salience across the whole image, and FDMi denotes the mean

fixation density across the whole image. For correlations in eye-centered coordinates, the FDM was computed separately for all eye

movements that had a contralateral and ipsilateral component. For correlations in head-centered coordinates, the SM and FDMwere

computed separately for contralateral and ipsilateral halves of each image. Results of comparisons of correlations across control and

inactivation blocks yielded similar results when using all fixations or matched numbers of fixations between the two blocks.

Point of equal selection in Choice task analysis
We used logistic regression, on a trial-by-trial basis (Chen and Stuphorn, 2018) to estimate the point of equal selection (PES) (Nou-

doost and Moore, 2011). The PES is the estimated TOA for which the selection of either target has equal probability.

Receptive Fields and Enhancement Index
For each neural recording, we normalized both the CRF and URF by linearly scaling the activity from 0 to 1 for visualization purposes,

with 0 corresponding to theminimum stimulus-driven activity across all stimulus and experimental conditions and 1 corresponding to

the maximum stimulus-driven activity across all stimulus and experimental conditions.

We used two indices to quantify the enhancement of neuronal responses to Unique stimuli appearing inside the URF,

UniqueIn �UniqueOut index : =
RU

In � RU
Out

RU
In +RU

Out

(2)

UniqueIn � Identical index : =
RU

In � RId

RU
In +RId

; (3)

with RU
In denoting the mean neuronal response to Unique stimuli presented inside the URF, [0, 500) ms relative to stimulus onset, RU

Out

denoting the mean response to Unique stimuli presented outside the URF, and RId denoting the mean response to Identical stimulus

arrays.

Support Vector Machine (SVM) linear classifier
We used a linear support vector machine (SVM) (Chang and Lin, 2011) to quantify the selectivity of neurons to Unique and Isolated

stimuli. A classifier was trained to discriminate between neuronal responses to Unique stimuli presented inside the URF and re-

sponses to Unique stimuli presented outside the URF, and between responses to Identical stimuli, on a trial-by-trial basis. Similarly,

a classifier was trained to discriminate neuronal responses to Isolated stimuli presented inside the CRF from responses to Isolated

stimuli presented outside the CRF, on a trial-by-trial basis. Before training, spike counts for each neuronal recording were normalized

across all stimulus conditions. All reported discrimination accuracies are based on four-fold cross-validation. Permutation tests (1000

repetitions) were used to determine whether the discrimination accuracy of a given neuronal recording was significantly greater than

that expected by chance. Specifically, we computed the difference in performance between the observed and the label-shuffled

mean performance (�50%) to determine the above-chance performance.
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Time-frequency analysis
Matching pursuit (MP) decomposition was used in calculating the spectrogram to optimize temporal and frequency resolutions

(Chandran KS et al., 2016; Chen et al., 2010). This multiscale decomposition allows sharp transients in the LFP signal to be repre-

sented by functions that have narrow temporal support, rather than oscillatory functions with a temporal support of hundreds of

milliseconds. The algorithm is an iterative procedure that selects a set of Gabor functions (atoms) from a redundant dictionary of

functions that constitute the best possible description of the original signal. Time-frequency plots were then obtained by calculating

the Wigner distribution of every atom and taking the weighted sum. We performed the MP computation using custom MATLAB

(MathWorks) scripts and the MP toolbox (Chandran KS et al., 2016). Permutation tests (N = 1000) with multiple correction were

used to determine whether the energy distribution at selected times and frequencies was significantly different between stimulus

conditions. The mean LFP power for each frequency band (alpha, 8–12 Hz; beta, 12–30 Hz; low gamma, 30–60 Hz; and high gamma,

60–150 Hz) was calculated as the mean of the energy [0, 500) ms after visual stimulus onset.

DATA AND CODE AVAILABILITY

The datasets and code supporting the current study have not been deposited in a public repository due to their volume and

complexity, but will be made available by the lead contact (T.M.) upon request.
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