1,507 research outputs found

    Emergent Gauge Fields in Systems with Competing Interactions

    No full text

    DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein–protein interactions

    Get PDF
    Protein–protein complexes play key roles in all cellular signal transduction processes. We have developed a fast and accurate computational approach to predict changes in the binding free energy upon alanine mutations in protein–protein interfaces. The approach is based on a knowledge-based scoring function, DrugScorePPI, for which pair potentials were derived from 851 complex structures and adapted against 309 experimental alanine scanning results. Based on this approach, we developed the DrugScorePPI webserver. The input consists of a protein–protein complex structure; the output is a summary table and bar plot of binding free energy differences for wild-type residue-to-Ala mutations. The results of the analysis are mapped on the protein–protein complex structure and visualized using J mol. A single interface can be analyzed within a few minutes. Our approach has been successfully validated by application to an external test set of 22 alanine mutations in the interface of Ras/RalGDS. The DrugScorePPI webserver is primarily intended for identifying hotspot residues in protein–protein interfaces, which provides valuable information for guiding biological experiments and in the development of protein–protein interaction modulators. The DrugScorePPI Webserver, accessible at http://cpclab.uni-duesseldorf.de/dsppi, is free and open to all users with no login requirement

    Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure

    Get PDF
    A method is proposed that finds enriched pathways relevant to a studied condition, using molecular and network data

    Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids

    Get PDF
    Transient receptor potential (TRP) channels represent a superfamily of unselective cation channels that are subdivided into seven subfamilies based on their sequence homology and differences in gating and functional properties. Little is known about the molecular mechanisms of TRP channel regulation, particularly of the "canonical" TRP (TRPC) subfamily and their activation by polyunsaturated fatty acids (PUFAs). Here, we analyzed the structure-function relationship of Drosophila fruit fly TRPC channels. The primary aim was to uncover the molecular basis of PUFA sensitivity of Drosophila TRP-like (TRPL) and TRPgamma channels. Amino acid (aa) sequence alignment of the three Drosophila TRPC channels revealed 50 aa residues highly conserved in PUFA-sensitive TRPL and TRPgamma channels but not in the PUFA-insensitive TRP channel. Substitution of respective aa in TRPL by corresponding aa of TRP identified 18 residues that are necessary for PUFA-mediated activation of TRPL. Most aa positions are located within a stretch comprising transmembrane domains S2-S4, whereas six aa positions have been assigned to the proximal cytosolic C-terminus. Interestingly, residues I465 and S471 are required for activation by 5,8,11,14-eicosatetraynoic acid (ETYA) but not 5,8,11-eicosatriynoic acid (ETI). As proof of concept, we generated a PUFA-sensitive TRP channel by exchanging the corresponding aa from TRPL to TRP. Our study demonstrates a specific aa pattern in the transmembrane domains S2-S4 and the proximal C-terminus essential for TRP channel activation by PUFAs

    Super natural II -a database of natural products

    Get PDF
    Natural products play a significant role in drug discovery and development. Many topological pharmacophore patterns are common between natural products and commercial drugs. A better understanding of the specific physicochemical and structural features of natural products is important for corresponding drug development. Several encyclopedias of natural compounds have been composed, but the information remains scattered or not freely available. The first version of the Supernatural database containing ∼ 50,000 compounds was published in 2006 to face these challenges. Here we present a new, updated and expanded version of natural product database, Super Natural II (http://bioinformatics.charite.de/supernatural), comprising ∼ 326,000 molecules. It provides all corresponding 2D structures, the most important structural and physicochemical properties, the predicted toxicity class for ∼ 170,000 compounds and the vendor information for the vast majority of compounds. The new version allows a template-based search for similar compounds as well as a search for compound names, vendors, specific physical properties or any substructures. Super Natural II also provides information about the pathways associated with synthesis and degradation of the natural products, as well as their mechanism of action with respect to structurally similar drugs and their target proteins

    Identification of a novel benzimidazole pyrazolone scaffold that inhibits KDM4 lysine demethylases and reduces proliferation of prostate cancer cells

    Get PDF
    Human lysine demethylase (KDM) enzymes (KDM1-7) constitute an emerging class of therapeutic targets, with activities that support growth and development of metastatic disease. By interacting with and co-activating the androgen receptor, the KDM4 subfamily (KDM4A-E) promotes aggressive phenotypes of prostate cancer (PCa). Knockdown of KDM4 expression or inhibition of KDM4 enzyme activity reduces the proliferation of PCa cell lines and highlights inhibition of lysine demethylation as a possible therapeutic method for PCa treatment. To address this possibility, we screened the ChemBioNet small molecule library for inhibitors of the human KDM4E isoform and identified several compounds with IC50 values in the low micromolar range. Two hits, validated as active by an orthogonal enzyme-linked immunosorbent assay, displayed moderate selectivity toward the KDM4 subfamily and exhibited antiproliferative effects in cellular models of PCa. These compounds were further characterized by their ability to maintain the transcriptionally silent histone H3 tri-methyl K9 epigenetic mark at subcytotoxic concentrations. Taken together, these efforts identify and validate a hydroxyquinoline scaffold and a novel benzimidazole pyrazolone scaffold as tractable for entry into hit-to-lead chemical optimization campaigns

    Periodic points in random substitution subshifts

    Get PDF
    We study various aspects of periodic points for random substitution subshifts. In order to do so, we introduce a new property for random substitutions called the disjoint images condition. We provide a procedure for determining the property for compatible random substitutions—random substitutions for which a well-defined abelianisation exists. We find some simple necessary criteria for primitive, compatible random substitutions to admit periodic points in their subshifts. In the case that the random substitution further has disjoint images and is of constant length, we provide a stronger criterion. A method is outlined for enumerating periodic points of any specified length in a random substitution subshift
    corecore