137 research outputs found
Recommended from our members
Sodium boiling incoherence in a 19-pin wire-wrapped bundle
During various flow transients in a sodium-cooled reactor, localized boiling can occur. If this boiling does not result in dryout, significant reactor core damage is not likely. A full-length electrically heated 19-pin bundle was used to determine the extent to which dynamic boiling can be sustained before dryout occurs. Over 30 boiling runs were made with runs at three flow-power conditions culminating in dryout. Continuous boiling for time periods exceeding 20 sec was observed. Preliminary data analysis suggested that thermal inertia of the duct walls, which were backed with thermal insulation, was higher than designed and was contributing to boiling incoherence. Posttest examination confirmed that the insulation annulus had become permeated with sodium, resulting in a significantly increased thermal inertia. Detailed comparisons of experimental results with the results of several different analytical techniques indicate that incoherent boiling caused by bundle thermal inertia was responsible for the long time periods between boiling inception and dryout. This suggests that thermal inertia designed into the reactor core could prevent or delay core damage during various flow-power mismatch transients
Working Memory Cells' Behavior May Be Explained by Cross-Regional Networks with Synaptic Facilitation
Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the tasks memory period, 3) rates that accelerate throughout the delay, and 4) patterns of inhibited firing (below baseline) analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex
Fix Your Eyes in the Space You Could Reach: Neurons in the Macaque Medial Parietal Cortex Prefer Gaze Positions in Peripersonal Space
Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping
Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network
Attractor neural networks are thought to underlie working memory functions in the cerebral cortex. Several such models have been proposed that successfully reproduce firing properties of neurons recorded from monkeys performing working memory tasks. However, the regular temporal structure of spike trains in these models is often incompatible with experimental data. Here, we show that the in vivo observations of bistable activity with irregular firing at the single cell level can be achieved in a large-scale network model with a modular structure in terms of several connected hypercolumns. Despite high irregularity of individual spike trains, the model shows population oscillations in the beta and gamma band in ground and active states, respectively. Irregular firing typically emerges in a high-conductance regime of balanced excitation and inhibition. Population oscillations can produce such a regime, but in previous models only a non-coding ground state was oscillatory. Due to the modular structure of our network, the oscillatory and irregular firing was maintained also in the active state without fine-tuning. Our model provides a novel mechanistic view of how irregular firing emerges in cortical populations as they go from beta to gamma oscillations during memory retrieval
A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment
Perception involves two types of decisions about the sensory world:
identification of stimulus features as analog quantities, or discrimination of
the same stimulus features among a set of discrete alternatives. Veridical
judgment and categorical discrimination have traditionally been conceptualized
as two distinct computational problems. Here, we found that these two types of
decision making can be subserved by a shared cortical circuit mechanism. We used
a continuous recurrent network model to simulate two monkey experiments in which
subjects were required to make either a two-alternative forced choice or a
veridical judgment about the direction of random-dot motion. The model network
is endowed with a continuum of bell-shaped population activity patterns, each
representing a possible motion direction. Slow recurrent excitation underlies
accumulation of sensory evidence, and its interplay with strong recurrent
inhibition leads to decision behaviors. The model reproduced the
monkey's performance as well as single-neuron activity in the
categorical discrimination task. Furthermore, we examined how direction
identification is determined by a combination of sensory stimulation and
microstimulation. Using a population-vector measure, we found that direction
judgments instantiate winner-take-all (with the population vector coinciding
with either the coherent motion direction or the electrically elicited motion
direction) when two stimuli are far apart, or vector averaging (with the
population vector falling between the two directions) when two stimuli are close
to each other. Interestingly, for a broad range of intermediate angular
distances between the two stimuli, the network displays a mixed strategy in the
sense that direction estimates are stochastically produced by winner-take-all on
some trials and by vector averaging on the other trials, a model prediction that
is experimentally testable. This work thus lends support to a common
neurodynamic framework for both veridical judgment and categorical
discrimination in perceptual decision making
Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers.
Few studies have assessed visuo-spatial working memory and inhibition in attention-deficit/hyperactivity disorder (ADHD) by recording saccades and consequently little additional knowledge has been gathered on oculomotor functioning in ADHD. Moreover, this is the first study to report the performance of non-affected siblings of children with ADHD, which may shed light on the familiality of deficits. A total of 14 boys with ADHD, 18 non-affected brothers, and 15 control boys aged 7-14 years, were administered a memory-guided saccade task with delays of three and seven seconds. Familial deficits were found in accuracy of visuo-spatial working memory, percentage of anticipatory saccades, and tendency to overshoot saccades relative to controls. These findings suggest memory-guided saccade deficits may relate to a familial predisposition for ADHD
No evidence for a saccadic range effect for visually guided and memory-guided saccades in simple saccade-targeting tasks
International audienceSaccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task
- …