46 research outputs found

    Characterization of a pneumococcal meningitis mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S. pneumoniae </it>is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation.</p> <p>Methods</p> <p>Adult mice (C57BL/6) were inoculated in the cisterna magna with increasing doses of <it>S. pneumoniae </it>serotype 3 colony forming units (CFU; n = 24, 10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6 </sup>and 10<sup>7 </sup>CFU) and survival studies were performed. Cerebrospinal fluid (CSF), brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 10<sup>4 </sup>CFU <it>S. pneumoniae </it>serotype 3 and sacrificed at 6 (n = 6) and 30 hours (n = 6). Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex<sup>®</sup>) in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies.</p> <p>Results</p> <p>Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 10<sup>4</sup>, 56 hrs; 10<sup>5</sup>, 38 hrs, 10<sup>6</sup>, 28 hrs. 10<sup>7</sup>, 24 hrs). Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 10<sup>4 </sup>CFU of <it>S. pneumoniae</it>, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively.</p> <p>Conclusion</p> <p>We have developed and validated a murine model of pneumococcal meningitis.</p

    TRIM5α and TRIM22 are differentially regulated according to HIV-1 infection phase and compartment.

    Get PDF
    CAPRISA, 2014.The antiviral role of TRIM E3 ligases in vivo is not fully understood. To test the hypothesis that TRIM5α and TRIM22 have differential transcriptional regulation and distinct anti-HIV roles according to infection phase and compartment, we measured TRIM5α, TRIM22, and type I interferon (IFN-I)-inducible myxovirus resistance protein A (MxA) levels in peripheral blood mononuclear cells (PBMCs) during primary and chronic HIV-1 infection, with chronic infection samples being matched PBMCs and central nervous system (CNS)-derived cells. Associations with biomarkers of disease progression were explored. The impact of IFN-I, select proinflammatory cytokines, and HIV on TRIM E3 ligase-specific expression was investigated. PBMCs from individuals with primary and chronic HIV-1 infection had significantly higher levels of MxA and TRIM22 than did PBMCs from HIV-1-negative individuals (P < 0.05 for all comparisons). PBMCs from chronic infection had lower levels of TRIM5α than did PBMCs from primary infection or HIV-1-uninfected PBMCs (P = 0.0001 for both). In matched CNS-derived samples and PBMCs, higher levels of MxA (P = 0.001) and TRIM5α (P = 0.0001) in the CNS were noted. There was a negative correlation between TRIM22 levels in PBMCs and plasma viral load (r = -0.40; P = 0.04). In vitro, IFN-I and, rarely, proinflammatory cytokines induced TRIM5α and TRIM22 in a cell type-dependent manner, and the knockdown of either protein in CD4(+) lymphocytes resulted in increased HIV-1 infection. These data suggest that there are infection-phase-specific and anatomically compartmentalized differences in TRIM5α and TRIM22 regulation involving primarily IFN-I and specific cell types and indicate subtle differences in the antiviral roles and transcriptional regulation of TRIM E3 ligases in vivo

    Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis

    Get PDF
    Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10 mu l of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10 mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-alpha level in frontal cortex. Prolonged treatment with canabidiol, 10 mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel. (C) 2012 Elsevier B.V. All rights reserved.CNPqFAPEMIGFAPESCUNESCNENASC project (PRONEX program CNPq/FAPESC)INCT-TMResearch Support Center on Applied Neuroscience (NAPNA-USP) [2011.1.9333.1.3]L'Oreal-UNESCO Brazil Fellowship for Women in Scienc

    Multicenter evaluation of the Amplicor Enterovirus PCR test with cerebrospinal fluid from patients with aseptic meningitis. The European Union Concerted Action on Viral Meningitis and Encephalitis.

    No full text
    The Amplicor Enterovirus PCR test was compared with viral culture for the detection of enteroviruses in cerebrospinal fluid (CSF) specimens. In a multicenter study in which nine laboratories participated, a total of 476 CSF specimens were collected from patients with suspected aseptic meningitis. Sixty-eight samples were positive by PCR (14.4%), whereas 49 samples were positive by culture (10.4%), demonstrating that the Amplicor Enterovirus PCR test was significantly more sensitive than culture (P < 0.001). After discrepancy analysis the sensitivity and specificity of the Amplicor Enterovirus PCR test obtained by using viral culture as the "gold standard" were 85.7 and 93.9%, respectively. Our results with the CSF specimens collected in different countries demonstrate that the Amplicor test is capable of detecting a large variety of enterovirus serotypes and epidemiologically unrelated isolates in CSF specimens from patients with aseptic meningitis. The Amplicor Enterovirus PCR test is a rapid assay which can be routinely performed with CSF samples and is an important improvement for the rapid diagnosis of enteroviral meningitis
    corecore