1,904 research outputs found

    Slow Proton Production in Semi-Inclusive Deep Inelastic Scattering off Deuteron and Complex Nuclei: Hadronization and Final State Interaction Effects

    Full text link
    The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,e'p)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mechanism, the hard interaction on a nucleon of a correlated pair leads, by recoil, to the emission of the partner nucleon, whereas in the latter mechanism proton is produced when the diquark, which is formed right after the visrtual photon-quark interaction, captures a quark from the vacuum. Unlike previous papers on the subject, particular attention is paid on the effects of the final state interaction of the hadronizing quark with the nuclear medium within an approach based upon an effective time-dependent cross section which combines the soft and hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown that the final state interaction of the hadronizing quark with the medium plays a relevant role both in deuteron and complex nuclei; nonetheless, kinematical regions where final state interaction effects are minimized can experimentally be selected, which would allow one to investigate the structure functions of nucleons embedded in the nuclear medium; likewise, regions where the interaction of the struck hadronizing quark with the nuclear medium is maximized can be found, which would make it possible to study non perturbative hadronization mechanisms.Comment: 35 pages, 12 figures, accepted for pubblication in Phys. Rev.

    Invariants and Coherent States for Nonstationary Fermionic Forced Oscillator

    Full text link
    The most general form of Hamiltonian that preserves fermionic coherent states stable in time is found in the form of nonstationary fermion oscillator. Invariant creation and annihilation operators and related Fock states and coherent states are built up for the more general system of nonstationary forced fermion oscillator.Comment: 13 pages, Latex, no figure

    Correlation femtoscopy of small systems

    Full text link
    The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown and Twiss intensity interferometry, are re-examined. The main subject of the paper is an analysis of the correlation femtoscopy when the source size is as small as the order of the uncertainty limit. It is about 1 fm for the current high energy experiments. Then the standard femtoscopy model of random sources is inapplicable. The uncertainty principle leads to the partial indistinguishability and coherence of closely located emitters that affect the observed femtoscopy scales. In thermal systems the role of corresponding coherent length is taken by the thermal de Broglie wavelength that also defines the size of a single emitter. The formalism of partially coherent phases in the amplitudes of closely located individual emitters is used for the quantitative analysis. The general approach is illustrated analytically for the case of the Gaussian approximation for emitting sources. A reduction of the interferometry radii and a suppression of the Bose-Einstein correlation functions for small sources due to the uncertainty principle are found. There is a positive correlation between the source size and the intercept of the correlation function. The peculiarities of the non-femtoscopic correlations caused by minijets and fluctuations of the initial states of the systems formed in pppp and e+e−e^+e^- collisions are also analyzed. The factorization property for the contributions of femtoscopic and non-femtoscopic correlations into complete correlation function is observed in numerical calculations in a wide range of the model parameters.Comment: 34 pages, 5 figures. In the version 4 some stylistic improvements were made, some misprints were corrected. The results and conclusions are not change

    Quantum optical effective-medium theory for loss-compensated metamaterials

    Full text link
    A central aim in metamaterial research is to engineer sub-wavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular strategy to compensate for the inevitable losses in metallic components of metamaterials is to add optical gain material. Here we study the quantum optics of such loss-compensated metamaterials at frequencies for which effective parameters can be unambiguously determined. We demonstrate that the usual effective parameters are insufficient to describe the propagation of quantum states of light. Furthermore, we propose a quantum-optical effective-medium theory instead and show that it correctly predicts the properties of the light emerging from loss-compensated metamaterials.Comment: 6 pages, 3 figures. Accepted for Physical Review Letter

    Correlations in atomic systems: Diagnosing coherent superpositions

    Full text link
    While investigating quantum correlations in atomic systems, we note that single measurements contain information about these correlations. Using a simple model of measurement -- analogous to the one used in quantum optics -- we show how to extract higher order correlation functions from individual "phtotographs" of the atomic sample. As a possible application we apply the method to detect a subtle phase coherence in mesoscopic superpostitions.Comment: 4 pages, 2 figures, provisionally accepted to Physical Review Letter

    Covariant boost and structure functions of baryons in Gross-Neveu models

    Full text link
    Baryons in the large N limit of two-dimensional Gross-Neveu models are reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a baryon to any inertial frame and shown to yield the covariant energy-momentum relation. Momentum distributions are computed exactly in arbitrary frames and used to interpolate between the rest frame and the infinite momentum frame, where they are related to structure functions. Effects from the Dirac sea depend sensitively on the occupation fraction of the valence level and the bare fermion mass and do not vanish at infinite momentum. In the case of the kink baryon, they even lead to divergent quark and antiquark structure functions at x=0.Comment: 13 pages, 12 figures; v2: minor correction

    Coherent states \`a la Klauder-Perelomov for the P\"oschl-Teller potentials

    Full text link
    In this paper we present a scheme for constructing the coherent states of Klauder-Perelomov's type for a particle which is trapped in P\"oschl-Teller potentials

    A Test of the Eikonal Approximation in High-Energy (e,e'p) Scattering

    Get PDF
    The Glauber method is extensively used to describe the motion of a hadronic projectile in interaction with the surrounding nuclear medium. One of the main approximations consists in the linearization of the wave equation for the interacting particle. We have studied the consequences of such an assumption in the case of the 12C(e,eâ€Čp)11B∗^{12}\mathrm{C(e,e}'\mathrm{p)}^{11}\hbox{\rm B}^* reaction at high proton momenta by comparing the results with the predictions obtained when all the ingredients of the calculation are unchanged but the second-order differential equation for the scattered wave, which is solved exactly for each partial wave up to a maximum of 120 spherical harmonics. We find that the Glauber cross section is always larger by a factor 10Ă·20%10 \div 20 \%, even at vanishing missing momenta. We give a quantum-mechanical explanation of this discrepancy. Nevertheless, a good correlation is found between the two predictions as functions of the missing momentum, especially in parallel kinematics.Comment: LaTeX, 8 pages, 4 figures uuencoded, accepted for publication on Phys. Lett.

    Nuclear transparencies for nucleons, knocked-out under various semi-inclusive conditions

    Full text link
    Using hadron dynamics we calculate nuclear transparencies for protons, knocked-out in high-Q2Q^2, semi-inclusive reactions. Predicted transparencies are, roughly half a standard deviation above the NE18 data. The latter contain the effects of binned proton missing momenta and mass, and of finite detector acceptances. In order to test sensitivity we compare computed transparencies without restrictions and the same with maximal cuts for missing momenta and the electron energy loss. We find hardly any variation, enabling a meaningful comparison with data and predictions based on hadron dynamics. Should discrepancies persist in high-statistics data, the above may with greater confidence be attributed to exotic components in the description of the outgoing proton.Comment: 13 pages + 3 figsin appended PS file, report # WIS-94/43/Oct-P
    • 

    corecore