54 research outputs found

    Cytotoxic effect of <em>Cousinia verbascifolia</em> Bunge against OVCAR-3 and HT-29 cancer cells

    Get PDF
    Introduction: Little information is available about phytochemical and biological properties of Cousinia genus. In a primary study, seven Cousinia species including C. verbascifolia showed cytotoxic activity ranged between 18.4 &plusmn; 0.59 to 87.9 &plusmn; 0.58 &mu;g/mL. To the best of our knowledge, no other biological studies have been conducted on this plant. Therefore, in this study the cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells was evaluated. Methods: Filtration and in vacuo concentration of methanol extract resulted in a green gum which was subjected on reverse column chromatography. Semi polar fraction (41.3 g) eluted with water: methanol (20:80), was then subjected on a silica gel column chromatography using hexane/acetone and resulted in 11 fractions. Finally, cytotoxic activities against ovarian and colon cancer cells were determined at a wavelength of 570 nm by Matrix metalloproteinase protein (MTT) standard method. Results: None of the fractions showed highly cytotoxic activity. Based on NCI, fractions Fr. 1, Fr. 2, Fr. 4, Fr. 5, Fr. 6, Fr. 8 and Fr. 10 showed moderately cytotoxicity with IC50 values ranged between 119 to 190 &mu;g/mL against OVCAR-3 cells. Fractions Fr. 1, Fr. 2, Fr. 6, Fr. 7 and Fr. 8 showed moderately cytotoxic activity ranged between 118 to 194 &mu;g/mL against HT-29 cells. Fr. 10 and Fr. 11 showed no cytotoxic activity. Conclusion: Due to the inhibitory properties of extract and its fractions on cancer cells, identification of responsible compounds possessing cytotoxic effects for generating possible new approach in medicinal chemistry are recommended.</p

    Cytotoxic activities of <em>Euphorbia kopetdaghi</em> against OVCAR-3 and EJ-138 cell lines

    Get PDF
    Introduction: Over the centuries, the genus Euphorbia was known to be toxic to humans and animals. Recently, in a primary study significant suppressive activity against phytohemagglutinin activated T-cell proliferation has been reported from this plant. Therefore, this study was designed to evaluate the cytotoxic effects of different parts of E. kopetdaghi against cancer cell lines. Methods: Filtration and in vacuo concentration resulted in a green gum which was subjected on silica gel CC (hexane/Acetone, 0&rarr;50) to several fractions: F1-F8. The inhibitory effects of obtained fractions with 5, 50, and 500 &mu;g/ml concentrations were evaluated on proliferation and viability of cancer cells (OVCAR and EJ-138) in 48 hours treatment. Finally, cell viability was determined at a wavelength of 570 by 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. Results: Based on studies of microscopic observation and viability testing, F1, F2, F4, F5, F6, and F7 showed significant cytotoxic effect at concentration of 50 and 500 &mu;g/ml against EJ-138 and OVCAR-3 cell lines. These fractions inhibited growth of EJ-138 and OVCAR-3 cells in a concentration-dependent manner. Fraction of F8 induced tumor promotion significantly in EJ-138 and OVCAR-3 cells, respectively. Conclusion: Due to the inhibitory properties of E. kopetdaghi extract and its fractions on cancer cells of OVCAR3 and EJ-13, isolation, purification and identification of compounds presented in the fractions possessing cytotoxic effects are recommended which were the area of our future research.</p

    Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System

    Get PDF
    Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated

    Euphorbia

    Full text link

    Data for: Pimpinelol, a Novel atypical Sesquiterpene Lactone from Pimpinella haussknechtii Fruits with Evaluation of Endoplasmic Reticulum Stress in Breast Cancer Cells

    No full text
    Supplementary fileTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line

    No full text
    Natural products isolated from plants provide a valuable source for expansion of new anticancer drugs. Nardosinen (4,9-dihydroxy-nardosin-6-en) is a natural sesquiterpene extracted from Juniperus foetidissima. Recently, we have reported the cytotoxic effects of nardosinen in various cancer cells. The aim of the current study was to investigate the anticancer features of nardosinen as well as its possible molecular mechanisms of the nardosinen cytotoxic effect on breast tumor cells. MTT assay showed that nardosinen notably inhibited cell proliferation in a dose-dependent manner in MCF-7 breast cancer cells. The growth inhibitory effect of nardosinen was associated with the induction of cell apoptosis, activation of caspase-6, increase of reactive oxygen species (ROS), and loss of mitochondrial membrane potentials (ΔΨm). Western blot assay following treatment with nardosinen showed that the expression levels of the Bax were significantly up-regulated and the expression levels of the Bcl-2 were significantly down-regulated. Our results finally exhibited that nardosinen induces apoptosis in breast cancer cells via the mitochondrial and caspase pathways

    Centaurea cyanus extracted 13-O-acetylsolstitialin A decrease Bax/Bcl-2 ratio and expression of cyclin D1/Cdk-4 to induce apoptosis and cell cycle arrest in MCF-7 and MDA-MB-231 breast cancer cell lines

    No full text
    Natural products are considered recently as one of the source for production of efficient therapeutical agents for breast cancer treatment. In this study, a sesquiterpene lactone, 13-O-acetylsolstitialin A (13ASA), isolated from Centaurea cyanus, showed cytotoxic activities against MCF-7 and MDA-MB-231 breast cancer cell lines using standard 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. To find the mechanism of action of cytotoxicity, annexin V/propidium iodide (PI) staining was performed for evaluation of apoptosis. This process was further confirmed by immunoblotting of anti- and proapoptotic, Bcl-2 and Bax, proteins. Cell cycle arrest was evaluated by measurement of fluorescence intensity of PI dye and further confirmed by immunoblotting of Cdk-4 and cyclin D1. Mitochondrial transmembrane potential (�Ψm) and generation of reactive oxygen species (ROS) were measured using the JC-1 and DCFDA fluorescence probes, respectively. These experiments showed that 13ASA is a potent cytotoxic agent, which activates apoptosis-mediated cell death. In response to this compound, Bax/Bcl-2 ratio was noticeably increased in MCF-7 and MDA-MB-231 cells. Moreover, 13ASA induced cell cycle arrest at subG1 and G1 phases by decreasing protein levels of cyclin D1 and Cdk-4. It was done possibly through the decrease of �Ψm and increase of ROS levels which induce apoptosis. In conclusion, this study mentioned that 13ASA inhibit the growth of MCF-7 and MDA-MB-231 breast cancer cell lines through the induction of cell cycle arrest, which triggers apoptotic pathways. 13ASA can be considered as a susceptible compound for further investigation in breast cancer study. © 2019 Wiley Periodicals, Inc
    • …
    corecore