356 research outputs found

    Validation of precision-cut liver slices to study drug-induced cholestasis:A transcriptomics approach

    Get PDF
    Hepatotoxicity is one of the major reasons for withdrawal of drugs from the market. Therefore, there is a need to screen new drugs for hepatotoxicity in humans at an earlier stage. The aim of this study was to validate human precision-cut liver slices (PCLS) as an ex vivo model to predict drug-induced cholestasis and identify the possible mechanisms of cholestasis-induced toxicity using gene expression profiles. Five hepatotoxicants, which are known to induce cholestasis (alpha-naphthyl isothiocyanate, chlorpromazine, cyclosporine, ethinyl estradiol and methyl testosterone) were used at concentrations inducing low (<30 %) and medium (30-50 %) toxicity, based on ATP content. Human PCLS were incubated with the drugs in the presence of a non-toxic concentration (60 µM) of a bile acid mixture (portal vein concentration and composition) as model for bile acid-induced cholestasis. Regulated genes include bile acid transporters and cholesterol transporters. Pathway analysis revealed that hepatic cholestasis was among the top ten regulated pathways, and signaling pathways such as farnesoid X receptor- and liver X receptor-mediated responses, which are known to play a role in cholestasis, were significantly affected by all cholestatic compounds. Other significantly affected pathways include unfolded protein response and protein ubiquitination implicating the role of endoplasmic reticulum stress. This study shows that human PCLS incubated in the presence of a physiological bile acid mixture correctly reflect the pathways affected in drug-induced cholestasis in the human liver. In the future, this human PCLS model can be used to identify cholestatic adverse drug reactions of new chemical entities

    Host microbiota dictates the proinflammatory impact of LPS in the murine liver

    Get PDF
    Gut microbiota can impact liver disease development via the gut-liver axis. Liver inflammation is a shared pathological event in various liver diseases and gut microbiota might influence this pathological process. In this study, we studied the influence of gut microbiota on the inflammatory response of the liver to lipopolysaccharide (LPS). The inflammatory response to LPS (1–10 μg/ml) of livers of specific-pathogen-free (SPF) or germ-free (GF) mice was evaluated ex vivo, using precision-cut liver slices (PCLS). LPS induced a more pronounced inflammatory response in GF PCLS than in SPF PCLS. Baseline TNF-α gene expression was significantly higher in GF slices as compared to SPF slices. LPS treatment induced TNF-α, IL-1β, IL-6 and iNOS expression in both SPF and GF PCLS, but the increase was more intense in GF slices. The anti-inflammatory markers SOCS3 and IRAK-M gene expression was significantly higher in GF PCLS than SPF PCLS at 24h with 1 µg/ml LPS treatment, and IL-10 was not differently expressed in GF PCLS than SPF PCLS. In addition, TLR-4 mRNA, but not protein, at basal level was higher in GF slices than in SPF slices. Taken together, this study shows that, in mice, the host microbiota attenuates the pro-inflammatory impact of LPS in the liver, indicating a positive role of the gut microbiota on the immune homeostasis of the liver

    Evolution de la composition en polyamines des baies de raisin au cours du processus d'infection par Botrytis cinerea

    Get PDF
    Evolution of polyamine composition in grape berries during infection with Botrytis cinereaPolyamines are growth regulators occurring naturally in grapevine(Vitis vinifera L.) and pathogenic fungi, e.g. Botrytis cinerea. Investigation of polyamines of in vitro-grown Botrytis cinerea mycelium and infected berries has shown modifications in the metabolism of the berries which are directly related to the development of the fungi in the berries. The abnormal polyamine concentrations in infected berries appear to be of fungal origin for free polyamines and of plant origin for conjugated polyamines. The specific role of each type of polyamine is discussed with regard to the host-parasite relation.

    Precision-cut intestinal slices:alternative model for drug transport, metabolism, and toxicology research

    Get PDF
    INTRODUCTION: The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies. Areas covered: This review provides an overview of the applications and an update of the most recent research on PCIS as an ex vivo model to study the transport, metabolism and toxicology of drugs and other xenobiotics. The unique features of PCIS and the differences with other models as well as the translational aspects are also discussed. Expert opinion: PCIS are a simple, fast, and reliable ex vivo model for drug ADME-tox research. Therefore, PCIS are expected to become an indispensable link in the in vitro-ex vivo-in vivo extrapolation, and a bridge in translation of animal data to the human situation. In the future, this model may be helpful to study the effects of interorgan interactions, intestinal bacteria, excipients and drug formulations on the ADME-tox properties of drugs. The optimization of culture medium and the development of a (cryo)preservation technique require more research

    Population Pharmacokinetic-Pharmacodynamic Modeling of Haloperidol in Patients With Schizophrenia Using Positive and Negative Syndrome Rating Scale

    Get PDF
    The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model that quantifies the efficacy of haloperidol, accounting for the placebo effect, the variability in exposure-response, and the dropouts. Subsequently, the developed model was utilized to characterize an effective dosing strategy for using haloperidol as a comparator drug in future antipsychotic drug trials. The time course of plasma haloperidol concentrations from 122 subjects and the Positive and Negative Syndrome Scale (PANSS) scores from 473 subjects were used in this analysis. A nonlinear mixed-effects modeling approach was utilized to describe the time course of PK and PANSS scores. Bootstrapping and simulation-based methods were used for the model evaluation. A 2-compartment model adequately described the haloperidol PK profiles. The Weibull and E-max models were able to describe the time course of the placebo and the drug effects, respectively. An exponential model was used to account for dropouts. Joint modeling of the PKPD model with dropout model indicated that the probability of patients dropping out is associated with the observed high PANSS score. The model evaluation results confirmed that the precision and accuracy of parameter estimates are acceptable. Based on the PKPD analysis, the recommended oral dose of haloperidol to achieve a 30% reduction in PANSS score from baseline is 5.6 mg/d, and the corresponding steady-state effective plasma haloperidol exposure is 2.7 ng/mL. In conclusion, the developed model describes the time course of PANSS scores adequately, and a recommendation of haloperidol dose was derived for future antipsychotic drug trials

    Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery.

    Get PDF
    Fluorescence-based enhanced reality (FLER) is a technique to evaluate intestinal perfusion based on the elaboration of the Indocyanine Green fluorescence signal. The aim of the study was to assess FLER's performances in evaluating perfusion in an animal model of long-lasting intestinal ischemia. An ischemic segment was created in 18 small bowel loops in 6 pigs. After 2 h (n = 6), 4 h (n = 6), and 6 h (n = 6), loops were evaluated clinically and by FLER to delineate five regions of interest (ROIs): ischemic zone (ROI 1), presumed viable margins (ROI 2a-2b), and vascularized areas (3a-3b). Capillary lactates were measured to compare clinical vs. FLER assessment. Basal (V 0 ) and maximal (V max) mitochondrial respiration rates were determined according to FLER. Lactates (mmol/L) at clinically identified resection lines were significantly higher when compared to those identified by FLER (2.43 ± 0.95 vs. 1.55 ± 0.33 p = 0.02) after 4 h of ischemia. Lactates at 2 h at ROI 1 were 5.45 ± 2.44 vs. 1.9 ± 0.6 (2a-2b; p &lt; 0.0001) vs. 1.2 ± 0.3 (3a-3b; p &lt; 0.0001). At 4 h, lactates were 4.36 ± 1.32 (ROI 1) vs. 1.83 ± 0.81 (2a-2b; p &lt; 0.0001) vs. 1.35 ± 0.67 (3a-3b; p &lt; 0.0001). At 6 h, lactates were 4.16 ± 2.55 vs. 1.8 ± 1.2 vs. 1.45 ± 0.83 at ROI 1 vs. 2a--2b (p = 0.013) vs. 3a-3b (p = 0.0035). Mean V 0 and V max (pmolO2/second/mg of tissue) were significantly impaired after 4 and 6 h at ROI 1 (V 0 (4h) = 34.83 ± 10.39; V max (4h) = 76.6 ± 29.09; V 0 (6h) = 44.1 ± 12.37 and V max (6h) = 116.1 ± 40.1) when compared to 2a--2b (V 0 (4h) = 67.1 ± 17.47 p = 0.00039; V max (4h) = 146.8 ± 55.47 p = 0.0054; V 0 (6h) = 63.9 ± 28.99 p = 0.03; V max (6h) = 167.2 ± 56.96 p = 0.01). V 0 and V max were significantly higher at 3a-3b. FLER may identify the future anastomotic site even after repetitive assessments and long-standing bowel ischemia

    Periurban Trypanosoma cruzi–infected Triatoma infestans, Arequipa, Peru

    Get PDF
    Simple interventions may facilitate vector control and prevent periurban transmission of Chagas disease

    Targeted imaging of integrins in cancer tissues using photocleavable Ru(ii) polypyridine complexes as mass-tags

    Get PDF
    Targeted epitope-based mass spectrometry imaging (MSI) utilizes laser cleavable mass-tags bound to targeting moieties for detecting proteins in tissue sections. Our work constitutes the first proof-of-concept of a novel laser desorption ionization (LDI)-MSI strategy using photocleavable Ru(ii) polypyridine complexes as mass-tags for imaging of integrins avß3 in human cancer tissues

    Synthesis of new N,N′-bis[1-aryl-3-(piperidine-1-yl)propylidene] hydrazine dihydrochlorides and evaluation of their cytotoxicity against human hepatoma and breast cancer cells

    Get PDF
    N,N0-Bis[1-aryl-3-(piperidine-1-yl)propylidene]hydrazine dihydrochlorides were synthesized by the reaction of 2 mols of 1-aryl-3-(piperidine-1-yl)-1- propanone hydrochlorides with 1 mol of hydrazine hydrate. Aryl part was C 6H5 (P1), 4-CH3C6H4 (P2), 4-CH3OC6H4 (P3), 4-HOC6H 4 (P4), 4-ClC6H4 (P5), 3-CH3OC 6H4 (P6), 4-FC6H4 (P7) and 4-BrC6H4 (P8). Except P1, all compounds were reported for the first time. The chemical structures were confirmed by UV, 1H NMR, 13C NMR and HRMS spectra. P1, P2, P7 and P8 against human hepatoma (Huh7) cells and P1, P2, P4, P5, P6, P7 and P8 against breast cancer (T47D) cells have shown cytotoxicity. P1, P2 and P7 had more potent cytotoxicity against Huh7 cells than the reference compound 5-FU, whereas only P2 was more potent than the 5-FU against T47D cells. Representative compound P7 inhibited the mitochondrial respiration at 144, 264 and 424 mM concentrations dose-dependantly in liver homogenates. The results suggest that P1, P2, P7 and P8 may serve as model compounds for further synthetic studies. © 2014 Informa UK Ltd
    corecore