428 research outputs found

    Local search for stable marriage problems

    Full text link
    The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on Computational Social Choice

    Structure–activity relationships of antibacterial peptides

    Get PDF
    Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure–activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens

    Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides

    Get PDF
    Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues. In this work, we moved significant steps forward in the field of chemical cross-linked SAPs towards the goal of stiff peptidic materials suited for the regeneration of several tissues. Novel SAPs were designed and characterized to boost the 4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester (Sulfo-SMCC) mediated cross-linking reaction, where they reached G′ values of ~500 kPa. An additional orthogonal cross-linking was also effective and allowed to top remarkable G′ values of 840 kPa. We demonstrated that cross-linking fastened the pre-existing self-aggregated nanostructures, and at the same time, a strong presence of ß-structures is necessary for an effective cross-linking of (LKLK)3-based SAPs. Combining strong SAP design and orthogonal cross-linking reactions, we brought SAP stiffness closer to the MPa threshold, and as such, we opened the door of the regeneration of skin, muscle and lung to biomimetic SAP technology

    Biomimetic Electrospun Self-Assembling Peptide Scaffolds for Neural Stem Cell Transplantation in Neural Tissue Engineering

    Get PDF
    Spinal cord regeneration using stem cell transplantation is a promising strategy for regenerative therapy. Stem cells transplanted onto scaffolds that can mimic natural extracellular matrix (ECM) have the potential to significantly improve outcomes. In this study, we strived to develop a cell carrier by culturing neural stem cells (NSCs) onto electrospun 2D and 3D constructs made up of specific crosslinked functionalized self-assembling peptides (SAPs) featuring enhanced biomimetic and biomechanical properties. Morphology, architecture, and secondary structures of electrospun scaffolds in the solid-state and electrospinning solution were studied step by step. Morphological studies showed the benefit of mixed peptides and surfactants as additives to form thinner, uniform, and defect-free fibers. It has been observed that β-sheet conformation as evidence of self-assembling has been predominant throughout the process except for the electrospinning solution. In vitro NSCs seeded on electrospun SAP scaffolds in 2D and 3D conditions displayed desirable proliferation, viability, and differentiation in comparison to the gold standard. In vivo biocompatibility assay confirmed the permissibility of implanted fibrous channels by foreign body reaction. The results of this study demonstrated that fibrous 2D/3D electrospun SAP scaffolds, when shaped as micro-channels, can be suitable to support NSC transplantation for regeneration following spinal cord injury

    Glycine-Spacers Influence Functional Motifs Exposure and Self-Assembling Propensity of Functionalized Substrates Tailored for Neural Stem Cell Cultures

    Get PDF
    The understanding of phenomena involved in the self-assembling of bio-inspired biomaterials acting as three-dimensional scaffolds for regenerative medicine applications is a necessary step to develop effective therapies in neural tissue engineering. We investigated the self-assembled nanostructures of functionalized peptides featuring four, two or no glycine-spacers between the self-assembly sequence RADA16-I and the functional biological motif PFSSTKT. The effectiveness of their biological functionalization was assessed via in vitro experiments with neural stem cells (NSCs) and their molecular assembly was elucidated via atomic force microscopy, Raman and Fourier Transform Infrared spectroscopy. We demonstrated that glycine-spacers play a crucial role in the scaffold stability and in the exposure of the functional motifs. In particular, a glycine-spacer of four residues leads to a more stable nanostructure and to an improved exposure of the functional motif. Accordingly, the longer spacer of glycines, the more effective is the functional motif in both eliciting NSCs adhesion, improving their viability and increasing their differentiation. Therefore, optimized designing strategies of functionalized biomaterials may open, in the near future, new therapies in tissue engineering and regenerative medicine

    Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines

    Full text link
    [EN] Thermal management is a major challenge for new generation turbofan aero-engines. One of the most promising heat exchangers are the so-called surface air-cooled oil coolers (SACOCs). In this study, an experimental methodology is proposed and implemented in order to characterize SACOCs mounted in turbofan bypass ducts. Three different SACOC geometries have been characterized under the same nominal operating point, while the actual velocity profile in the bypass was reproduced by means of a distortion screen upstream the test section. The heat exchangers were mounted in counterflow configuration and feature the same fin geometry in the oil side. The three prototypes varied only in the air side, being the first a baseline flat plate, the second a SACOC with standard trapezoidal fins and the third featuring optimized fins designed to reduce the pressure drop. Aerothermal results demonstrated that the effect of the SACOC on the bypass flow was confined to a region about the same height and width of the finned area, avoiding the need of reproducing the whole bypass duct. However, for this reduced-height experimental approach to be valid, we show that the velocity profile needs to be rearranged to match the specific section of the whole bypass. We also demonstrate how the optimized fin geometry achieved a 10% lower friction factor than the standard one at nominal flow conditions while increasing the overall heat transfer coefficient by 5.2%.This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement n° 831977: Aerodynamic upgrade of Surface Air-Cooled Oil Coolers (SACOC). A. Felgueroso is supported through the Programa de Apoyo para la Investigación y Desarrollo of the Universitat Politècnica de València under grant PAID-01-20 n° 21589. The authors also wish to thank Safran Aircraft Engines for their kind permission to share the data presented in this publication. Special thanks are also given to Mr. Adolfo Guzmán for his inestimable support during the experimental campaign.Broatch, A.; Olmeda, P.; Garcia Tiscar, J.; Felgueroso-Rodríguez, A.; Chávez-Modena, M.; González, LM.; Gelain, M.... (2022). Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines. International Journal of Heat and Mass Transfer. 190:1-13. https://doi.org/10.1016/j.ijheatmasstransfer.2022.12277511319

    Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines

    Full text link
    [EN] Thermal management is a major challenge for new generation turbofan aero-engines. One of the most promising heat exchangers are the so-called surface air-cooled oil coolers (SACOCs). In this study, an experimental methodology is proposed and implemented in order to characterize SACOCs mounted in turbofan bypass ducts. Three different SACOC geometries have been characterized under the same nominal operating point, while the actual velocity profile in the bypass was reproduced by means of a distortion screen upstream the test section. The heat exchangers were mounted in counterflow configuration and feature the same fin geometry in the oil side. The three prototypes varied only in the air side, being the first a baseline flat plate, the second a SACOC with standard trapezoidal fins and the third featuring optimized fins designed to reduce the pressure drop. Aerothermal results demonstrated that the effect of the SACOC on the bypass flow was confined to a region about the same height and width of the finned area, avoiding the need of reproducing the whole bypass duct. However, for this reduced-height experimental approach to be valid, we show that the velocity profile needs to be rearranged to match the specific section of the whole bypass. We also demonstrate how the optimized fin geometry achieved a 10% lower friction factor than the standard one at nominal flow conditions while increasing the overall heat transfer coefficient by 5.2%.This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement n° 831977: Aerodynamic upgrade of Surface Air-Cooled Oil Coolers (SACOC). A. Felgueroso is supported through the Programa de Apoyo para la Investigación y Desarrollo of the Universitat Politècnica de València under grant PAID-01-20 n° 21589. The authors also wish to thank Safran Aircraft Engines for their kind permission to share the data presented in this publication. Special thanks are also given to Mr. Adolfo Guzmán for his inestimable support during the experimental campaign.Broatch, A.; Olmeda, P.; Garcia Tiscar, J.; Felgueroso-Rodríguez, A.; Chávez-Modena, M.; González, LM.; Gelain, M.... (2022). Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines. International Journal of Heat and Mass Transfer. 190:1-13. https://doi.org/10.1016/j.ijheatmasstransfer.2022.12277511319

    Analysis of mandelonitrile lyase and 0-glucosidase from sweet almonds by combined electrophoretic techniques

    Get PDF
    Almonds are a rich source of mandelonitrile lyase (oxynitrilase) and f3-glucosidase. The isolation of these two enzymes from sweet almonds requires fractional ammonium sulfate precipitation followed by ion-exchange chromatography on diethylaminoethyl-(DEAE) and carboxymethylcellulose (CMC) columns. In the present investigation different electrophoretic techniques such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing in immobilized pH gradients (IEF-IPG), and capillary electrophoresis were used to characterize these two enzymes. For the first time, B-glucosidase and oxynitrilase were separated in an immobilized pH gradient of one pH unit. Capillary zone electrophoresis (CZE) was an excellent tool for analysis of the purity of enzyme preparations, achieving complete separation of various protein constituents in only 15 min. CZE showed a resolving capacity for the separation of enzyme forms comparable to that of isoelectric focusing in an immobilized pH gradient
    corecore